[1]Yang Q X, Ren X J, Gao Y K, et al. Effect of carburization on residual stress field of 20CrMnTi sample and its numerical simulation[J]. Materials Science and Engineering A, 2005, 392(6): 240-247. [2]罗红丽. 20CrMnTi钢表面化学镀层与渗碳层耐磨、耐蚀性的对比研究[D]. 镇江: 江苏大学, 2015. Luo Hongli. Comparative study of wear and corrosion resistance of electroless plating coating and carburization layer on 20CrMnTi steel[D]. Zhenjiang: Jiangsu University, 2015. [3]杨 武, 顾濬祥, 黎樵燊, 等. 金属的局部腐蚀[M]. 北京: 化学工业出版社, 1995. [4]张 艳, 李 倩, 张 媛. 904L不锈钢在5 g/L H2SO4溶液中的腐蚀行为[J]. 沈阳工业大学学报, 2015, 37(2): 236-239. Zhang Yan, Li Qian, Zhang Yuan. Corrosion behavior of 904L stainless steel in 5 g/L H2SO4 solution[J]. Journal of Shenyang University of Technology, 2015, 37(2): 236-239. [5]Carboni C, Peyre P, Berander G, et al. Influence of high power diode laser surface melting on the pitting corrosion resistance of type 316L stainless steel[J]. Journal of Materials Science, 2002, 37(17): 3715-3720. [6]曾洪涛, 向 嵩, 刘松林, 等. 904L不锈钢在氢氟酸和浓硫酸混合液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2013, 33(3): 182-187. Zeng Hongtao, Xiang Song, Liu Songlin, et al. Corrosion behaviors of 904L austenite stainless steel in concentrated sulfuric acid containing hydrofluoric acid[J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33(3): 182-187. [7]刘 悦, 吴红艳, 杜林秀. 铁路车辆用V-N-Cr微合金化Q690高强耐候钢组织性能和腐蚀行为[J]. 材料工程, 2021, 49(4): 111-119. Liu Yue, Wu Hongyan, Du Linxiu. Microstructure and corrosion behavior of V-N-Cr microalloyed Q960 high strength weathering steel for rail way vehicles[J]. Journal of Materials Engineering, 2021, 49(4): 111-119. [8]Jargelius-Pettersson. Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels[J]. Corrosion Science, 1999, 41(8): 1639-1664. [9]林玉珍, 杨德钧. 腐蚀和腐蚀控制原理[M]. 北京: 中国石化出版社, 2014: 214. [10]Mouri L, Mabille I, Fiaud C, et al. Improvement of the corrosion resistance of a low carbon steel using a two step plasma treatment[J]. Corrosion Science, 2002, 44(9): 2089-2099. [11]曹楚南. 腐蚀电化学原理. [M]. 3版. 北京: 化学工业出版社, 2008: 122-194. [12]Song D, Ma A B, Jing J H, et al. Corrosion behavior of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing[J]. Corrosion Science, 2011, 53(1): 362-373. [13]Ly R, Karayan A I, Hartwig K T. Insights into the electrochemical response of a partially recrystallized Al-Mg-Si alloy and its relationship to corrosion events[J]. Electrochimica Acta, 2019, 308: 35-44. [14]Shi Z M, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation[J]. Corrosion Science, 2010, 52(2): 579-588. [15]Ambat R, Aung N N, Zhou W, et al. Corrosion behavior of Mg-Zn-Y Alloy with long-period stacking ordered structures[J]. Journal of Materials Science and Technology, 2012, 28(12): 1157-1162. [16]由 园. C-N(-La)共渗层原子间作用第一原理计算与N扩散分子动力学模拟[D]. 哈尔滨: 哈尔滨工业大学, 2013. You Yuan. First-principles calculations of interatomic interactions and molecular dynamics simulation of N diffusion in rare-earth nitrocarburized layers[D]. Harbin: Harbin Institute of Technology, 2013. [17]Chyou S D, Shih H C. Structure and electrochemical properties of plasma-nitrided low alloy steel[J]. Materials Science and Engineering A, 1990, 129(1): 109-117. [18]Palit G C, Kain V, Gadiyar H S. Electrochemical investigations of pitting corrosion in nitrogen-bearing type 316LN stainless steel[J]. Corrosion, 1993, 49(12): 977-991. [19]Tsai W T, Reynders B, Stratmann M, et al. The effect of applied potential on the stress corrosion cracking behavior of high nitrogen steels[J]. Corrosion Science, 1993, 34(10): 1647-1656. [20]Clayton C R, Rosenzweig L, Oversluizen M, et al. Influence of nitrogen on the passivity of 18-8(0.24%N) stainless steels[J]. Electrochemical Society, 1986, 86(7): 323-339. |