[1]Quan Guozheng, Liu Jin, Mao An, et al. A characterization for the hot flow behaviors of as-extruded 7050 aluminum alloy[J]. High Temperature Materials and Processes, 2015, 34(7): 643-650. [2]杜 冲, 汪泽匪, 孟 毅, 等. Al-Cu-Mg-Zn超硬铝合金盘类构件塑性变形性能及锻造成形工艺的研究[J]. 精密成形工程, 2022, 14(2): 101-109. Du Chong, Wang Zefei, Meng Yi, et al. Plastic deformation properties and forging process of Al-Cu-Mg-Zn ultra-hard aluminium alloy disc-shaped component[J]. Journal of Netshape Forming Engineering, 2022, 14(2): 101-109. [3]姜中涛, 汪 鑫, 周志明, 等. 7050铝合金锻件固溶处理工艺优化研究[J]. 精密成形工程, 2021, 13(6): 112-116. Jiang Zhongtao, Wang Xin, Zhou Zhiming, et al. Optimization of solution treatment process for 7050 aluminum alloy forgings[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 112-116. [4]徐戊矫, 唐农杰, 江长友, 等. 双级固溶双级时效处理对7050铝合金组织与性能的影响[J]. 热加工工艺, 2018, 47(8): 226-229. Xu Wujiao, Tang Nongjie, Jiang Changyou, et al. Effects of two-step solution and two-step aging treatment on microstructures and properties of 7050Al alloys[J]. Hot Working Technology, 2018, 47(8): 226-229. [5]姜中涛, 汪 鑫, 周志明, 等. 双级固溶工艺对7050铝合金组织 与力学性能的影响[J]. 金属热处理, 2022, 47(3): 102-106. Jiang Zhongtao, Wang Xin, Zhou Zhiming, et al. Effect of two-step solution process on microstructure and mechanical properties of 7050 aluminum alloy[J]. Heat Treatment of Metals, 2022, 47(3): 102-106. [6]黎志勇, 史庆南. 固溶处理对Al-Zn-Mg-Cu系超强铝合金组织与硬度的影响[J]. 金属热处理, 2020, 45(8): 185-188. Li Zhiyong, Shi Qingnan. Effect of solution treatment on microstructure and hardness of Al-Zn-Mg-Cu super-strength aluminum alloy[J]. Heat Treatment of Metals, 2020, 45(8): 185-188. [7]杨 重. 7050铝合金模锻件淬火残余应力及消减工艺研究[D]. 长沙: 湖南大学, 2017. Yang Zhong. Study on reduction of quench residual stress in 7050 aluminum alloy die forgings[D]. Changsha: Hunan University, 2017. [8]姚诗杰, 夏伟军, 袁武华, 等. 基于分段冷压法7050大型铝合金锻件残余应力的消减[J]. 机械工程材料, 2018, 42(1): 84-88. Yao Shijie, Xia Weijun, Yuan Wuhua, et al. Residual stress reduction of 7050 large-scale aluminum alloy forging based on segmented cold-pressing method[J]. Materials for Mechanical Engineering, 2018, 42(1): 84-88. [9]姚诗杰. 冷压工艺对7050铝合金锻件残余应力的影响研究[D]. 长沙: 湖南大学, 2017. Yao Shijie. Study on the effect of cold compression process for residual stress of 7050 aluminum alloy forgings[D]. Changsha: Hunan University, 2017. [10]胡 久, 马 路, 王文全, 等. 大型7075铝合金锻件在不同摆放位置下的淬火变形模拟[J]. 热加工工艺, 2021, 50(10): 147-150. Hu Jiu, Ma Lu, Wang Wenquan, et al. Simulation of quenching deformation of large 7075 aluminum alloy forgings in different positions[J]. Hot Working Technology, 2021, 50(10): 147-150. [11]周万平, 吴运新, 刘瑶琼, 等. 铝合金T形锻件淬火应力仿真与优化设计[J]. 轻合金加工技术, 2016, 44(3): 54-59. Zhou Wanping, Wu Yunxin, Liu Yaoqiong, et al. Simulation and optimization design of the quenching stress of T-shaped Al-alloy forgings[J]. Light Alloy Fabrication Technology, 2016, 44(3): 54-59. [12]吴道祥, 王 彬, 刘 强. 模压法消除7050铝合金H型截面构件淬火残余应力的研究[J]. 铝加工, 2019(6): 23-26, 27. Wu Daoxiang, Wang Bin, Liu Qiang. Study on elimination of quenching residual stress of 7050 aluminum alloy H-shaped member by molding[J]. Aluminium Fabrication, 2019(6): 23-26, 27. [13]Koç Muammer, Culp John, Altan Taylan. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes[J]. Journal of Materials Processing Technology, 2006, 174(1-3): 342-354. |