[1]兰晔峰, 王创造, 胡秋晨, 等. 奥氏体不锈钢离子渗N组织及性能[J]. 兰州理工大学学报, 2020, 46(1): 7-12. Lan Yefeng, Wang Chuangzao, Hu Qiuchen, et al. Microstructure and performance of austenitic stainless steel with ionic permeation of N[J]. Journal of Lanzhou University of Technology, 2020, 46(1): 7-12. [2]Francesca Borgioli. From austenitic stainless steel to expanded austenite-S phase: Formation, characteristics and properties of an elusive metastable phase[J]. Metals, 2020, 10(2): 187. [3]Stinville J C, Cormier J, Templier C, et al. Monotonic mechanical properties of plasma nitrided 316L polycrystalline austenitic stainless steel: Mechanical behaviour of the nitrided layer and impact of nitriding residual stresses[J]. Materials Science and Engineering A, 2014, 605: 51-58. [4]刘坤吉, 王锡林, 刘庆华, 等. 不锈钢零件表面离子渗氮的研究与应用[J]. 金属热处理, 2005, 30(4): 55-58. Liu Kunji, Wang Xilin, Liu Qinghua, et al. Research and application of plasma nitriding on stainless steel parts[J]. Heat Treatment of Metals, 2005, 30(4): 55-58. [5]Wang J, Ji X, Peng Q, et al. Effects of DC plasma nitriding parameters on microstructure and properties of 304L stainless steel[J]. Materials Characterization, 2009, 60(3): 197-203. [6]Zhao Y, Yu B, Dong L, et al. Low-pressure arc plasma-assisted nitriding of AISI 304 stainless steel[J]. Surface and Coatings Technology, 2012, 210: 90-96. [7]Araújo E D, Bandeira R M, Manfrinato M D, et al. Effect of ionic plasma nitriding process on the corrosion and micro-abrasive wear behavior of AISI 316L austenitic and AISI 470 super-ferritic stainless steels[J]. Journal of Materials Research and Technology, 2019, 8(2): 2180-2191. [8]Ohtsu N, Miura K, Hirano M, et al. Investigation of admixed gas effect on plasma nitriding of AISI 316L austenitic stainless steel[J]. Vacuum, 2021, 193(2): 110545. [9]侯彩云, 许晓磊, 于志伟. 铁基高温合金GH2132的离子渗氮层组织[J]. 金属热处理, 2016, 41(12): 10-12. Hou Caiyun, Xu Xiaolei, Yu Zhiwei. Microstructure of plasma nitriding layer of Fe-based superalloy GH2132[J]. Heat Treatment of Metals, 2016, 41(12): 10-12. [10]Esfandiari M, Dong H. Improving the surface properties of A286 precipitation-hardening stainless steel by low-temperature plasma nitriding[J]. Surface and Coatings Technology, 2007, 201(14): 6189-6196. [11]于明飞, 向 嵩, 马国强, 等. 氮化处理对904L不锈钢组织和腐蚀行为的影响[J]. 腐蚀与防护, 2018, 39(5): 375-379. Yu Mingfei, Xiang Song, Ma Guoqiang, et al. Influence of nitriding treatment on microstructure and corrosion behavior of 904L stainless steel[J]. Corrosion and Protection, 2018, 39(5): 375-379. [12]Huang Z, Guo Z X, Liu L, et al. Structure and corrosion behavior of ultra-thicknitrided layer produced by plasma nitriding of austenitic stainless steel[J]. Surface and Coatings Technology, 2021, 405: 126689. [13]王 琳, 孙 枫, 佟小军, 等. 1Cr11Ni2W2MoV钢的离子渗氮[J]. 金属热处理, 2015, 40(6): 128-131. Wang Lin, Sun Feng, Tong Xiaojun, et al. Plasma nitriding of 1Cr11Ni2W2MoV steel[J]. Heat Treatment of Metals, 2015, 40(6): 128-131. [14]Tschiptschin A P, Nishikawa A S, Varela L B, et al. Thermal stability of expanded austenite formed on a DC plasma nitrided 316L austenitic stainless steel[J]. Thin Solid Films, 2017, 644: 156-165. [15]Li G J, Qia P, Li C, et al. Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel[J]. Surface and Coatings Technology, 2008, 202(12): 2749-2754. [16]Gontijo L C, Machado R, Miola E J, et al. Characterization of plasma-nitrided iron by XRD, SEM and XPS[J]. Surface and Coatings Technology, 2004, 183(1): 10-17. [17]Wu D, Ge Y, Kahn H, et al. Diffusion profiles after nitrocarburizing austenitic stainless steel[J]. Surface and Coatings Technology, 2015, 279: 180-185. [18]Herasa E D L, Ybarrab G, Diego L D, et al. Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres-Influence on microstructure and corrosion resistance[J]. Surface and Coatings Technology, 2017, 313: 47-54. |