[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]魏水淼, 马 盼, 季鹏程, 等. 高熵合金增材制造研究进展[J]. 材料工程, 2021, 49(10): 1-17. Wei Shuimiao, Ma Pan, Ji Pengcheng, et al. Research progress in high entropy alloys by additive manufacturing[J]. Journal of Materials Engineering, 2021, 49(10): 1-17. [3]高天宇, 乔珺威, 吴玉程. FeMnCoCr系亚稳高熵合金的研究进展[J]. 金属热处理, 2021, 46(4): 1-8. Gao Tianyu, Qiao Junwei, Wu Yucheng. Research progress of FeMnCoCr metastable high-entropy alloys[J]. Heat Treatment of Metals, 2021, 46(4): 1-8. [4]Tang Z, Senkov O N, Parish C M, et al. Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization[J]. Materials Science and Engineering A, 2015, 647: 229-240. [5]Alshataif Y A, Sivasankaran S, Al-Mufadi F A, et al. Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: A review[J]. Metals and Materials International, 2020, 26(8): 1099-1133. [6]Becker T H, Kumar P, Ramamurty U. Fracture and fatigue in additively manufactured metals[J]. Acta Materialia, 2021, 219: 117240. [7]张仁奇, 樊 磊, 周宝刚, 等. 选区激光熔化316L不锈钢的各向组织与性能[J]. 金属热处理, 2020, 45(9): 161-166. Zhang Renqi, Fan Lei, Zhou Baogang, et al. Microstructure and properties of selective laser melted 316L stainless steel in different directions[J]. Heat Treatment of Metals, 2020, 45(9): 161-166. [8]顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32-55. Gu Dongdong, Zhang Hongmei, Chen Hongyu, et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5): 32-55. [9]Kunce I, Polanski M, Karczewski K, et al. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping[J]. Journal of Alloys and Compounds, 2015, 648: 751-758. [10]Wang R, Zhang K, Davies C, et al. Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication[J]. Journal of Alloys and Compounds, 2017, 694: 971-981. [11]Shiratori H, Fujieda T, Yamanaka K, et al. Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting[J]. Materials Science and Engineering A, 2016, 656: 39-46. [12]Karlsson D, Marshal A, Johansson F, et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy-A comparison between selective laser melting and induction melting[J]. Journal of Alloys and Compounds, 2019, 784: 195-203. [13]Sun Z, Tan X, Wang C, et al. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: Example of an AlxCoCrFeNi high-entropy alloy[J]. Acta Materialia, 2021, 204: 116505. [14]Karimi J, Ma P, Jia Y D, et al. Linear patterning of high entropy alloy by additive manufacturing[J]. Manufacturing Letters, 2020, 24: 9-13. [15]Guo C, Li S, Shi S, et al. Effect of processing parameters on surface roughness, porosity and cracking of as-built IN738LC parts fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology, 2020, 285: 116788. [16]闫泰起, 陈冰清, 唐鹏钧, 等. 铺粉层厚对选区激光熔化成形AlSi10Mg合金质量及效率的影响[J]. 中国激光, 2021, 48(10): 52-62. Yan Taiqi, Chen Bingqing, Tang Pengjun, et al. Effect of layer thickness on forming quality and efficiency of AlSi10Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 2021, 48(10): 52-62. [17]Carter L N, Martin C, Withers P J, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy[J]. Journal of Alloys and Compounds, 2014, 615: 338-347. [18]Nadammal N, Mishurova T, Fritsch T, et al. Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2021, 38: 101792. [19]Prashanth K G, Scudino S, Maity T, et al. Is the energy density a reliable parameter for materials synthesis by selective laser melting?[J]. Materials Research Letters, Taylor & Francis, 2017, 5(6): 386-390. [20]Luo S, Su Y, Wang Z. Tailored microstructures and strengthening mechanisms in an additively manufactured dual-phase high-entropy alloy via selective laser melting[J]. Science China Materials, 2020, 63(7): 1279-1290. [21]Niu P D, Li R D, Yuan T C, et al. Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting[J]. Intermetallics, 2019, 104: 24-32. [22]Piglione A, Dovgyy B, Liu C, et al. Printability and microstructure of the CoCrFeMnNi high-entropy alloy fabricated by laser powder bed fusion[J]. Materials Letters, 2018, 224: 22-25. [23]Snell R, Tammas-Williams S, Chechik L, et al. Methods for rapid pore classification in metal additive manufacturing[J]. Jom, 2020, 72(1): 101-109. |