[1]Liu J, Wang X H, Liu J, et al. The effect of heat treatment on the microstructure evolution and properties of an age-hardened Cu-3Ti-2Mg alloy[J]. Archives of Metallurgy and Materials, 2021, 66(1): 163-170. [2]Liu F, Jiang L, Peng L J, et al. Simultaneously enhanced hardness and electrical conductivity in a Cu-Ni-Si alloy by addition of cobalt[J]. Journal of Alloys and Compounds, 2021, 862: 158667. [3]Cheng J Y, He K Z, Deng M Q, et al. Microstructural evolution and properties of Cu-1.5wt%Ti alloy during aging[J]. Materials Science Forum, 2020, 993: 183-193. [4]Wang W, Kang H, Chen Z, et al. Effects of Cr and Zr additions on microstructure and properties of Cu-Ni-Si alloys[J]. Materials Science and Engineering A, 2016, 673: 378-390. [5]Li R, Kang H J, Chen Z N, et al. A promising structure for fabricating high strength and high electrical conductivity copper alloys[J]. Scientific Reports, 2016, 6(1): 20799. [6]Su J, Jia S, Ren F. Simulation analysis of minimum bending radius for lead frame copper alloys[J]. Engineering Review, 2013, 33(2): 101-106. [7]Zhang Z J, Pang J C, Zhang Z F. Optimizing the fatigue strength of ultrafine-grained Cu-Zn alloys[J]. Materials Science and Engineering A, 2016, 666: 305-313. [8]Kim H G, Lee T W, Kim S M, et al. Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys[J]. Metals and Materials International, 2013, 19(1): 61-65. [9]Liu J, Xian H W, Tingting G, et al. Microstructural evolution and properties of aged Cu-3Ti-3Ni alloy[J]. Rare Metal Materials and Engineering, 2016, 45(5): 1162-1167. [10]Liu J, Wang X, Guo T, et al. Microstructure and properties of Cu-Ti-Ni alloys[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(11): 1199-1204. [11]Liu J, Wang X, Ran Q, et al. Microstructure and properties of Cu-3Ti-1Ni alloy with aging process[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(12): 3183-3188. [12]Zhang P, Li Y, Lei Q, et al. Microstructure and mechanical properties of a CuNiTi alloy with a large product of strength and elongation[J]. Journal of Materials Research and Technology, 2020, 9(2): 2299-2307. [13]龚留奎. Cu-Cr-Zr-Ti 合金微合金化元素作用及构效关系研究[D]. 赣州: 江西理工大学, 2019. [14]王 剑, 陈 津, 阙仲萍. 合金元素Sn对Cu-Ni-Ti合金微观组织和性能的影响[J]. 太原理工大学学报, 2018, 49(4): 517-524. Wang Jian, Chen Jin, Que Zhongping. Effect of Sn on microstructure and mechanical properties of Cu-Ni-Ti alloy[J]. Journal of Taiyuan University of Technology, 2018, 49(4): 517-524. [15]王 剑, 阙仲萍, 陈 津, 等. Zn 对 Cu-Ni-Ti 合金电导率和硬度的影响研究[J]. 太原理工大学学报, 2015, 46(1): 35-39. Wang Jian, Que Zhongping, Chen Jin, et al. Effect of Zn on the Conductivity and Hardness of Cu-Ni-Ti alloy[J]. Journal of Taiyuan University of Technology, 2015, 46(1): 35-39. [16]冉倩妮. Cu-Ti-Mg 导电弹性铜合金的组织与性能研究[D]. 西安: 西安理工大学, 2016. |