[1]赵振业. 航空高性能齿轮钢的研究与发展[J]. 航空材料学报, 2000, 20(3): 148-157. Zhao Zhenye. Development of higher-performance aeronautical gear steel[J]. Journal of Aeronautical Materials, 2000, 20(3): 148-157. [2]周 敏, 厉 勇, 黄顺喆, 等. 奥氏体化温度对二次硬化渗碳钢组织与力学性能的影响[J]. 金属热处理, 2017, 42(2): 108-112. Zhou Min, Li Yong, Huang Shunzhe, et al. Effect of austenitizing temperature on microstructure and mechanical properties of secondary hardened carburized steel[J]. Heat Treatment of Metals, 2017, 42(2): 108-112. [3]戴彦璋, 韩 顺, 厉 勇, 等. 回火温度对新一代传动齿轮钢C61组织及性能的影响[J]. 金属热处理, 2022, 47(1): 49-56. Dai Yanzhang, Han Shun, Li Yong, et al. Effect of tempering temperature on microstructure and properties of a new generation transmission gear steel C61[J]. Heat Treatment of Metals, 2022, 47(1): 49-56. [4]梁晓东, 鞠 哲, 刘 骥, 等. 淬火温度对渗碳齿轮钢C64显微组织及力学性能的影响[J]. 金属热处理, 2021, 46(4): 88-94. Liang Xiaodong, Ju Zhe, Liu Ji, et al. Effect of quenching temperature on microstructure and mechanical properties of gear steel C64[J]. Heat Treatment of Metals, 2021, 46(4): 88-94. [5]田 勇, 宋超伟, 葛泉江, 等. 航空用高温轴承钢CSS-42L热处理技术及其展望[J]. 轧钢, 2019, 36(6): 1-5. Tian Yong, Song Chaowei, Ge Quanjiang, et al. Status of research and development of heat treatment techniques for heat resistant bearing steel CSS-42L applied for aviation[J]. Steel Rolling, 2019, 36(6): 1-5. [6]Wright J A, Sebastian J T, Kooy R T, et al. Design, development and application of new, high-performance gear steels[J]. Gear Technology, 2010, 27(1): 46-53. [7]Shen T, Krantz T, Sebastian J. Advanced gear alloys for ultra high strength applications[R]. NASA Technical Reports, 2011. [8]Kern C P, Wright J A, Sebastia J T, et al. Processing new gear steels[J]. Gear Solutions, 2012, 10: 28-41. [9]Krantz T, Tufts B. Pitting and bending fatigue evaluations of a new case-carburized gear steel[C]//ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2007. [10]周丽娜, 唐光泽, 马欣新, 等. 奥氏体化温度M50钢组织转变的影响[J]. 材料热处理学报, 2016, 37(7): 89-94. Zhou Lina, Tang Guangze, Ma Xinxin, et al. Effect of austenitizing temperature on microstructure transformation of M50 steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(7): 89-94. [11]王馨缘, 李 亮, 吴启迪, 等. 奥氏体化温度对轧态C61钢显微组织和力学性能的影响[J]. 材料热处理学报, 2021, 42(7): 72-78. Wang Xinyuan, Li Liang, Wu Qidi, et al. Effect of austenitizing temperature on microstructure andmechanical properties of rolled C61 steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(7): 72-78. [12]张鹏杰, 王春旭, 厉 勇, 等. 淬火温度对2200 MPa级超高强度钢力学性能与微观组织的影响[J]. 金属热处理, 2021, 46(1): 70-74. Zhang Pengjie, Wang Chunxu, Li Yong, et al. Effect of quenching temperature on mechanical properties and microstructure of 2200 MPa ultra-high strength steel[J]. Heat Treatment of Metals, 2021, 46(1): 70-74. [13]Youngblood J L, Raghavan M. Correlation of microstructure with mechanical properties of 300M steel[J]. Metallurgical and Materials Transactions A, 1977, 8(9): 1439-1448. [14]崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2011. [15]梁晓东, 王晨充, 李 亮, 等. 淬火温度对C61齿轮钢显微组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(11): 79-86. Liang Xiaodong, Wang Chenchong, Li Liang, et al. Effect of quenching temperature on microstructure and mechanical properties of C61 gear steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(11): 79-86. [16]刘 跃, 韩 顺, 厉 勇, 等. 淬火温度对GE1014超高强度钢组织及性能的影响[J]. 金属热处理, 2022, 47(2): 125-130. Liu Yue, Han Shun, Li Yong, et al. Effect of quenching temperature on mechanical properties and microstructure of GE1014 ultra-high strength steel[J]. Heat Treatment of Metals, 2022, 47(2): 125-130. |