[1]范建文, 孙国强, 高勇刚, 等. 装配式建筑钢结构用耐蚀钢材的腐蚀性研究及工程应用[J]. 钢结构, 2021, 36(3): 52-57. Fan Jianwen, Sun Guoqiang, Gao Yonggang, et al. Atmospheric corrosion of weathering steels for assembly steel structure[J]. Steel Construction, 2021, 36(3): 52-57. [2]赵 捷. 我国高品质船舶、海洋工程用钢研究进展[J]. 材料导报, 2018, 32(5): 428-431. Zhao Jie. Progress on high quality ship steel and marine engineering steel in China[J]. Materials Review, 2018, 32(5): 428-431. [3]罗浩源, 梁 杰. 浅谈钢结构技术在超高层建筑中的运用[J]. 四川建材, 2021, 47(4): 61-63. [4]唐 帅, 刘振宇, 王国栋, 等. 正火温度对低碳微合金钢Z向性能的影响[J]. 金属热处理, 2009, 34(7): 46-49. Tang Shuai, Liu Zhenyu, Wang Guodong, et al. Effect of normalization temperature on Z-direction property of low carbon microalloyed steel[J]. Heat Treatment of Metals, 2009, 34(7): 46-49. [5]袁少威, 刘庆波, 庞百鸣, 等. 抗层状撕裂高层建筑用100 mm厚Q420GJC-Z35钢板的开发[J]. 轧钢, 2013, 30(2): 25-28. Yuan Shaowei, Liu Qingbo, Pang Baiming, et al. Development of 100 mm yhickness Q420GJC-Z35 lamellar tearing resistant heavy plate for high-rise construction[J]. Steel Rolling, 2013, 30(2): 25-28. [6]向 华, 秦 军, 刘奉家, 等. 高韧性抗层状撕裂钢板Q345FTE-Z35的开发[J]. 宽厚板, 2015, 21(5): 32-35. Xiang Hua, Qin Jun, Liu Fengjia, et al. Development of Q345FTE-Z35 steel plate with high toughness and through-thickness property[J]. Wide and Heavy Plate, 2015, 21(5): 32-35. [7]张 强, 许少普, 李忠波, 等. Q345E-Z35特厚板的研发[J]. 钢铁研究学报, 2015, 27(11): 73-76. Zhang Qiang, Xu Shaopu, Li Zhongbo, et al. Research and development of extra-thick steel plate of Q345E-Z35[J]. Journal of Iron and Steel Research, 2015, 27(11): 73-76. [8]董春宇, 赵宪明, 周晓光, 等. 冷却工艺参数对海洋工程用H型钢组织性能的影响[J]. 东北大学学报, 2019, 40(4): 478-482. Dong Chunyu, Zhao Xianming, Zhou Xiaoguang, et al. Effect of cooling process parameters on microstructure and mechanical properties of marine engineering H-beam steel[J]. Journal of Northeastern University, 2019, 40(4): 478-482. [9]罗兴壮, 杨跃标, 朱超云, 等. 正火冷却工艺对管线钢组织与性能的影响[J]. 金属热处理, 2019, 44(5): 196-199. Luo Xingzhuang, Yang Yuebiao, Zhu Chaoyun, et al. Effect of normalizing cooling process on microstructure and properties of pipeline steel[J]. Heat Treatment of Metals, 2019, 44(5): 196-199. [10]朱施利, 胡文豪. 40MnB钢偏析形成带状组织的机理研究[J]. 物理测试, 2009, 27(6): 9-12. Zhu Shili, Hu Wenhao. Research on mechanism of forming banded structure for segregation of 40MnB steel[J]. Physics Examination and Testing, 2009, 27(6): 9-12. [11]钟群鹏, 张 峥, 王守凯, 等. 碳钢韧脆转变温度与组织参量和解理断裂单元尺寸的关系[J]. 钢铁, 1993, 28(10): 49-53. Zhong Qunpeng, Zhang Zheng, Wang Shoukai, et al. Relation of ductile-brittle transition temperature to microstructure parameter and size of cleavage fracture element in carbon steels[J]. Iron and Steel, 1993, 28(10): 49-53. [12]郑 浩, 刘丽华, 张中武. 热加工对硫化物及氧化物夹杂的影响[J]. 材料导报, 2021, 35(13): 13168-13176. Zheng Hao, Liu Lihua, Zhang Zhongwu. Effects of hot processing on sulfide and oxide inclusions[J]. Materials Reports, 2021, 35(13): 13168-13176. [13]林腾昌, 门 兵, 程 雄, 等. 热处理对铸态钢中硫化锰夹杂物的影响[J]. 中国冶金, 2021, 31(4): 48-31. Lin Tengchang, Men Bing, Cheng Xiong, et al. Influence of heat treatment on MnS inclusion in as-cast steel[J]. China Metallurgy, 2021, 31(4): 48-31. |