[1]程 鹏, 黄先球, 庞 涛, 等. 耐候桥梁钢的研究现状与发展趋势[J]. 材料保护, 2020, 53(7): 142-146. Cheng Peng, Huang Xianqiu, Pang Tao, et al. Research status and development trend of weather resistant bridge steel[J]. Materials Protection, 2020, 53(7): 142-146. [2]田志强, 孙 力, 刘建磊, 等. 国内外耐候桥梁钢的发展现状[J]. 河北冶金, 2019(2): 11-13, 25. Tian Zhiqiang, Sun Li, Liu Jianlei, et al. Development status of weather-resistant bridge steel at home and abroad[J]. Hebei Metallurgy, 2019(2): 11-13, 25. [3]吴智深, 刘加平, 邹德辉, 等. 海洋桥梁工程轻质、高强、耐久性结构材料现状及发展趋势研究[J]. 中国工程科学, 2019, 21(3): 31-40. Wu Zhishen, Liu Jiaping, Zou Dehui, et al. Research on current situation and development trend of light weight, high strength and durability structural materials for ocean bridge engineering[J]. Engineering Sciences, 2019, 21(3): 31-40. [4]范 益. Q500EHPS桥梁钢力学性能和耐蚀性能的调控研究[D]. 秦皇岛: 燕山大学, 2017. Fan Yi. Study on controlling of mechanical and corrosion-resistance properties of Q500EHPS steel for bridge[D]. Qinhuangdao: Yanshan University, 2017. [5]邱福祥, 艾爱国, 罗松云, 等. 高强度桥梁钢Q500qE板材焊接性能研究[J]. 金属材料与冶金工程, 2017, 45(3): 10-14, 18. Qiu Fuxiang, Ai Aiguo, Luo Songyun, et al. Study on welding performance of Q500qE plate of high strength bridge steel[J]. Metal Materials and Metallurgy Engineering, 2017, 45(3): 10-14, 18. [6]赵丽洋, 刘东博, 谯明亮, 等. Q500qENH耐候桥梁钢形变奥氏体连续冷却转变行为研究[J]. 上海金属, 2022, 44(1): 35-39. Zhao Liyang, Liu Dongbo, Qiao Mingliang, et al. Study on continuous cooling transformation behavior of deformed austenite in Q500qENH weather-resistant bridge steel[J]. Shanghai Metals, 2022, 44(1): 35-39. [7]Chen J, Tang S, Liu Z Y, et al. Influence of molybdenum content on transformation behavior of high performance bridge steel during continuous cooling[J]. Materials and Design, 2013, 49: 465-470. [8]Cheng P, Liu J, Huang X Q, et al. Effect of silicon on the corrosion behaviour of 690 MPa weathering bridge steel in simulated industrial atmosphere[J]. Construction and Building Materials, 2022, 328: 127030. [9]Guo J, Shang C J, Yang S W, et al. Effect of carbon content on mechanical properties and weather resistance of high performance bridge steels[J]. Journal of Iron and Steel Research, International, 2009, 16(6): 63-69. [10]Cao R, Han C, Guo X L, et al. Effects of boron on the microstructure and impact toughness of weathering steel weld metals and existing form of boron[J]. Materials Science & Engineering A, 2022, 833: 142560. [11]熊文娟. Q690q桥梁钢实验室TMCP轧制工艺及轧后热处理的研究[D]. 武汉: 武汉科技大学, 2012. Xiong Wenjuan. Study on TMCP schedule and heat treatment for Q690q bridge steel[D]. Wuhan: Wuhan University of Science and Technology, 2012. [12]姬凤芹, 利成宁, 唐 帅, 等. 低成本减量化Q690qENH高强桥梁钢的开发[J]. 中国冶金, 2015, 25(4): 1-6, 32. Ji Fengqin, Li Chengning, Tang Shuai, et al. Development of low cost reduced Q690qENH high strength bridge steel[J]. China Metallurgy, 2015, 25(4): 1-6, 32. [13]彭宁琦, 何 航, 罗 登, 等. 高强韧耐候桥梁钢Q500qENH的生产工艺[J]. 金属热处理, 2021, 46(8): 139-144. Peng Ningqi, He Hang, Luo Deng, et al. Production process of high strength and toughness weather-resistant bridge steel Q500qENH[J]. Heat Treatment of Metals, 2021, 46(8): 139-144. [14]白 星, 钱亚军, 刘吉文, 等. 低屈强比桥梁用钢Q420qE的研究与开发[J]. 金属热处理, 2019, 44(8): 106-109. Bai Xing, Qian Yajun, Liu Jiwen, et al. Research and development of bridge steel Q420qE with low yield ratio[J]. Heat Treatment of Metals, 2019, 44(8): 106-109. [15]周文浩. 高强度桥梁钢Q690q的连续冷却转变行为[J]. 金属热处理, 2022, 47(9): 202-208. Zhou Wenhao. Continuous cooling transformation behavior of high strength bridge steel Q690q[J]. Heat Treatment of Metals, 2022, 47(9): 202-208. [16]张 可, 叶晓瑜, 李昭东, 等. 铁素体基Ti-Mo高强钢连续冷却相变及组织性能[J]. 钢铁研究学报, 2019, 31(8): 733-740. Zhang Ke, Ye Xiaoyu, Li Zhaodong, et al. Continuous cooling transformation and microstructure and properties of ferritic Ti-Mo high strength steel[J]. Journal of Iron and Steel Research, 2019, 31(8): 733-740. [17]Chen C Y, Yang J R, Chen C C, et al. Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti-Mo microalloyed steels during continuous cooling process[J]. Materials Characterization, 2016, 114: 18-29. [18]张 可, 李昭东, 隋凤利, 等. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38. Zhang Ke, Li Zhaodong, Sui Fengli, et al. Effect of cooling rate on microstructure transformation and mechanical properties of Ti-V-Mo composite microalloyed steel[J]. Acta Metallurgica Sinica, 2018, 54(1): 31-38. [19]Karmakar A, Sahu P, Neogy S, et al. Effect of cooling rate and chemical composition on microstructure and properties of naturally cooled vanadium-microalloyed steels[J]. Metallurgical and Materials Transactions, A-Physical Metallurgy and Materials Science, 2017, 48(4): 1581-1595. [20]Tong M M, Li D Z, Li Y Y. Modeling the austenite-ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method[J]. Acta Materialia, 2004, 52(5): 1155-1162. [21]高新亮, 肖 瑶, 韩 毅, 等. Cr元素对桥梁耐候钢相变行为的影响[J]. 燕山大学学报, 2018, 42(2): 119-124. Gao Xinliang, Xiao Yao, Han Yi, et al. Effect of Cr element on phase transformation behavior of bridge weathering steel[J]. Journal of Yanshan University, 2018, 42(2): 119-124. |