[1]吴 旭, 黄 曦, 王泽民, 等. 微波淬火对低合金船板钢梯度组织结构及性能的影响[J]. 金属热处理, 2021, 46(7): 144-148. Wu Xu, Huang Xi, Wang Zemin, et al. Effect of microwave quenching on gradient structure and properties of low-alloyed ship plate steel[J]. Heat Treatment of Metals, 2021, 46(7): 144-148. [2]杜瑜宾, 胡小锋, 张守清, 等. 含1.4%Cu的HSLA钢的组织和力学性能[J]. 金属学报, 2020, 56(10): 1343-1354. Du Yubin, Hu Xiaofeng, Zhang Shouqing, et al. Microstructure and mechanical properties of HSLA steel containing 1.4%Cu[J]. Acta Meterials Sinica, 2020, 56(10): 1343-1354. [3]Van Bohemen S M C, Sietsma J. Martensite formation in partially and fully austenitic plain carbon steels[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2009, 40(5): 1059-1068. [4]李珊珊, 沈俊昶, 朱心昆, 等. 时效温度对785 MPa级高强度含铜钢组织与性能的影响[J]. 金属热处理, 2015, 40(6): 97-100. Li Shanshan, Shen Junchang, Zhu Xinkun, et al. Effects of aging temperature on microstructure and properties of 785 MPa high strength copper-contained steel[J]. Heat Treatment of Metals, 2015, 40(6): 97-100. [5]陈连生, 徐静辉, 田亚强, 等. 含Cu低碳钢I&Q&P工艺处理后的组织与性能[J]. 金属热处理, 2016, 41(8): 76-80. Chen Liansheng, Xu Jinghui, Tian Yaqiang, et al. Effect of Cu partitioning on microstructure and mechanical properties of low-carbon steel by I&Q&P process[J]. Heat Treatment of Metals, 2016, 41(8): 76-80. [6]陈 晨, 罗小兵, 梁丰瑞, 等. 淬火加热方法对含铜高强度球扁钢组织和性能的影响[J]. 热处理, 2021, 36(3): 31-36, 54. Chen Chen, Luo Xiaobing, Liang Fengrui, et al. Effect of methods of heating for hardening on microstructure and properties of cooper-bearing high-strength flat bulb steel[J]. Heat Treatment, 2021, 36(3): 31-36, 54. [7]赵 扬, 孙占花. 建筑用低合金钢的焊接组织与性能[J]. 金属热处理, 2017, 42(2): 87-91. Zhao Yang, Sun Zhanhua, Microstructure and properties of welded low alloy steel for construction[J]. Heat Treatment of Metals, 2017, 42(2): 87-91. [8]Li C, Duan R, Fu W, et al. Improvement of mechanical properties for low carbon ultra-high strength steel strengthened by Cu-rich multistructured precipitation via modification to bainite[J]. Materials Science and Engineering: A, 2021, 817: 141337. [9]Gorbatov O I, Gornostyrev Y N, Korzhavyi P A, et al. Effect of Ni and Mn on the formation of Cu precipitates in α-Fe[J]. Scripta Materialia, 2015, 102: 11-14. [10]Wang X, Sha G, Shen Q, et al. Age-hardening effect and formation of nanoscale composite precipitates in a Ni-Al-Mn-Cu-containing steel[J]. Materials Science and Engineering: A, 2015, 627: 340-347. [11]李振团, 柴 锋, 杨才福, 等. 淬火工艺对铜沉淀强化UHS钢组织性能的影响[J]. 钢铁, 2019, 54(6): 79-85. Li Zhentuan, Chai Feng, Yang Caifu, et al. Effect of quenching process on microstructure and mechanical properties of Cu precipitated hardened ultra-high strength steel[J]. Iron and Steel, 2019, 54(6): 79-85. [12]Goodman S R, Brenner S S, Low J R. An FIM-atom probe study of the precipitation of copper from iron-1.4 at.pct copper. Part I: Field-ion microscopy[J]. Metallurgical Transactions, 1973, 4(10): 2363-2369. [13]Heo Y U, Kim Y K, Kim J S, et al. Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy[J]. Acta Materialia, 2013, 61(2): 519-528. [14]Othen P, Jenkins M, Smith G. High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe[J]. Philosophical Magazine A, 1994, 70(1): 1-24. [15]Sun M, Zhang W, Liu Z, et al. Direct observations on the crystal structure evolution of nano Cu-precipitates in an extremely low carbon steel[J]. Materials Letters, 2017, 187: 49-52. [16]张守清, 胡小锋, 杜瑜宾, 等. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238. Zhang Shouqing, Hu Xiaofeng, Du Yubin, et al. Cross-section effect of Ni-Cr-Mo-B ultra-heavy steel plate for offshore platform[J]. Acta Metallurgica Sinica, 2020, 56(9): 1227-1238. [17]张正延, 柴 锋, 罗小兵, 等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为[J]. 金属学报, 2019, 55(6): 783-791. Zhang Zhengyan, Chai Feng, Luo Xiaobing, et al. The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel[J]. Acta Metallurgica Sinica, 2019, 55(6): 783-791. [18]Stechauner G, Kozeschnik E. Thermo-kinetic modeling of Cu precipitation in α-Fe[J]. Acta Materialia, 2015, 100: 135-146. [19]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2013. |