[1]董绍明, 胡建文, 梁子玉. 锯片基材75Cr1钢的热处理工艺及其组织性能[J]. 金属热处理, 2021, 46(9): 193-198. Dong Shaoming, Hu Jianwen, Liang Ziyu. Heat treatment process of 75Cr1 steel for saw blade substrate and its microstructure and mechanical properties[J]. Heat Treatment of Metals, 2021, 46(9): 193-198. [2]焦安杰. 75Cr1锯片用热轧带钢的开发[J]. 轧钢, 2017, 34(3): 20-23. Jiao Anjie. Development of 75Cr1 hot rolled strip for saw blade[J]. Steel Rolling, 2017, 34(3): 20-23. [3]胡松涛, 余万华, 廉晓洁, 等. 高碳合金钢75Cr1 高温变形后相和组织的转变[J]. 特殊钢, 2016, 37(1): 57-59. Hu Songtao, Yu Wanhua, Lian Xiaojie, et al. Transformation of phases and structure in elevated-temperature deformed high carbon alloy steel 75Cr1[J]. Special Steel, 2016, 37(1): 57-59. [4]孙宜强, 甘晓龙, 汪水泽, 等. 金刚石锯片基体用钢75Cr1 的连续冷却转变曲线研究[J]. 热加工工艺, 2019, 48(4): 92-95. Sun Yiqiang, Gan Xiaolong, Wang Shuize, et al. Study on continuous cooling transformation curves of 75Cr1 steel for diamond saw blades matrix[J]. Hot Working Technology, 2019, 48(4): 92-95. [5]刘阳春. 75Cr1 钢淬火硬度不均匀原因分析与改进措施[J]. 金属热处理, 2015, 40(6): 207-211. Liu Yangchun. Cause and resolutions on uneven hardness of 75Cr1 steel after quenching[J]. Heat Treatment of Metals, 2015, 40(6): 207-211. [6]陈明昕, 杨晓江, 冯晓勇. Nb元素添加对75Cr1钢热变形行为的影响[J]. 中国冶金, 2020, 30(6): 71-79. Chen Mingxin, Yang Xiaojiang, Feng Xiaoyong. Effect of niobium addition on hot deformation behavior of 75Cr1 steel[J]. China Metallurgy, 2020, 30(6): 71-79. [7]张先菊, 胡 帅, 赵荐伟, 等. 国产75Cr1锯片钢热处理工艺研究[J]. 热加工工艺, 2021, 50(8): 124-127. Zhang Xianju, Hu Shuai, Zhao Jianwei, et al. Study on heat treatment process of domestic 75Cr1 saw blade steel[J]. Hot Working Technology, 2021, 50(8): 124-127. [8]蒋 波, 胡学文, 周乐育, 等. 0.6Ni 中碳合金钢的奥氏体连续冷却转变行为[J]. 金属热处理, 2020, 45(4): 10-15. Jiang Bo, Hu Xuewen, Zhou Leyu, et al. Continuous cooling transformation behavior of austenite in 0.6Ni alloyed medium carbon steel[J]. Heat Treatment of Metals, 2020, 45(4): 10-15. [9]赵晋斌, 邱保文, 田 勇, 等. Ni对高强船板钢显微组织及低温韧性的影响[J]. 轧钢, 2020, 37(4): 12-16. Zhao Jinbin, Qiu Baowen, Tian Yong, et al. Effect of Ni on microstructure and low-temperature toughness of high strength ship plate steel[J]. Steel Rolling, 2020, 37(4): 12-16. [10]马金伟. Ni含量对高强耐磨钢强塑性的影响[D]. 包头: 内蒙古科技大学, 2021. Ma Jinwei. Effect of Ni content on strength plasticity of high strength wear resistant steel[D]. Baotou: Inner Mongolia University of Science and Technology, 2021. [11]裴 剑. Ni含量及回火工艺对300M钢组织与性能的影响[D]. 秦皇岛: 燕山大学, 2011. Pei Jian. The influence of Ni content and heat treatment on microstructure and mechanical properties of 300M steel[D]. Qinhuangdao: Yanshan University, 2011. [12]王 猛. Ni系超低温用钢强韧化机理研究及生产技术开发[D]. 沈阳: 东北大学, 2017. Wang Meng. Study on strengthening and toughening mechanisms and development of industrial manufacturing technology for Ni-containing cryogenic steels[D]. Shenyang: Northeastern University, 2017. [13]蒋 波, 董正强, 周乐育, 等. 回火温度和Ni对盾构机用大尺寸轴承套圈用钢组织性能的影响[C]//第十届中国钢铁年会暨第六届宝钢学术年会论文集. 2015: 1-5. Jiang Bo, Dong Zhengqiang, Zhou Leyu, et al. Effect of tempering temperature and Ni on the microstructure and properties of large size bearing ring steel for tunneling boring machine[C]//Proceedings of the 10th China iron and steel annual conference and the 6th Baosteel academic annual conference. 2015: 1-5. [14]黄 琦, 阎 军, 潘红波, 等. 冷速对不同Ni 含量低温钢的组织及相变的影响[J]. 金属热处理, 2015, 40(10): 166-171. Huang Qi, Yan Jun, Pan Hongbo, et al. Influence of cooling rate on microstructure and phase-transformation of low temperature steel with different Ni content[J]. Heat Treatment of Metals, 2015, 40(10): 166-171. [15]钟 磊, 吴开明, 董航宇. Ni元素对微纳结构低温贝氏体钢组织与力学性能的影响[J]. 武汉科技大学学报, 2018, 41(5): 328-333. Zhong Lei, Wu Kaiming, Dong Hangyu. Effect of Ni microstructure and mechanical properties of low temperature micro/nano-structure bainitic steel[J]. Journal of Wuhan University of Science and Technology, 2018, 41(5): 328-333. [16]章守华, 吴承建. 钢铁材料学[M]. 北京: 冶金工业出版社,1992: 30-50. [17]张宏斌. 涟钢75Cr1锯片钢生产工艺优化[J]. 轧钢, 2014, 31(1): 32-35. Zhang Hongbin. Research on production process for saw steel 75Cr1 in Hunan Valin Lianyuan Iron & Steel Co., Ltd.,[J]. Steel Rolling, 2014, 31(1): 32-35. |