[1]邸全康, 周玉丽, 程四华, 等. 600 MPa级煤巷支护锚杆钢的开发与质量控制[J]. 煤炭科学技术, 2011, 39(9): 76-80. Di Quankang, Zhou Yuli, Cheng Sihua, et al. Development and quality control of 600 MPa steel bar for bolt applied to seam gateway support[J]. Coal Science and Technology, 2011, 39(9): 76-80. [2]刘德军, 左建平, 刘海雁, 等. 我国煤矿巷道支护理论及技术的现状与发展趋势[J]. 矿业科学学报, 2020, 5(1): 22-33. Liu Dejun, Zuo Jianping, Liu Haiyan, et al. Development and present situation of support theory and technology in coal mine roadway in China[J]. Journal of Mining Science and Technology, 2020, 5(1): 22-33. [3]王晓燕, 孙汝林, 王 璐. MG500锚杆用热轧带肋钢筋研制与开发[J]. 金属制品, 2014, 40(4): 48-51. Wang Xiaoyan, Sun Rulin, Wang Lu. Research and development of MG500 hot-rolled ribbed bar for anchor rod[J]. Metal Products, 2014, 40(4): 48-51. [4]吴拥政, 康红普, 丁 吉, 等. 超高强热处理锚杆开发与实践[J]. 煤炭学报, 2015, 40(2): 308-313. Wu Yongzheng, Kang Hongpu, Ding Ji, et al. Development and application of ultrahigh-heat processed rock bolts[J]. Journal of China Coal Society, 2015, 40(2): 308-313. [5]陈立勇, 柴建铭, 袁永文, 等. BHRB600热轧高强韧树脂锚杆钢筋的开发[J]. 轧钢, 2007(4): 66-69. Chen Liyong, Chai Jianming, Yuan Yongwen, et al. Development of high strength and toughness BHRB600 hot rolled resin anchor steel bars[J]. Steel Rolling, 2007(4): 66-69. [6]吴 静, 甄维静, 李永亮. MG600锚杆钢的奥氏体晶粒长大规律[J]. 金属热处理, 2019, 44(4): 76-81. Wu Jing, Zhen Weijing, Li Yongliang. Austenite grain growth behavior of MG600 anchor steel[J]. Heat Treatment of Metals, 2019, 44(4): 76-81. [7]Wen T, Hu X F, Song Y Y, et al. Carbides and mechanical properties in Fe-Cr-Ni-Mo high-strength steel with different V contents[J]. Materials Science and Engineering A, 2013, 588: 201-207. [8]侯晓英, 毕永杰, 郝 亮. 热轧TRP980钢微观组织及强化机制分析[J]. 钢铁, 2019, 54(4): 63-67, 82. Hou Xiaoying, Bi Yongjie, Hao Liang. Analysis on microstructure and strengthening mechanisms of hot-rolled TRIP980 steel[J]. Iron & Steel, 2019, 54(4): 63-67, 82. [9]徐 曼, 孙新军, 刘清友, 等. 低碳含钒钢组织变化及V(C, N)析出规律[J]. 钢铁钒钛, 2005(2): 25-30. Xu Man, Sun Xinjun, Liu Qingyou, et al. Microstructural evolution and precipitation of V(C, N) in a low-carbon V-bearing steel[J]. Iron Steel Vanadium Titanium, 2005(2): 25-30. [10]林晏民. CONSTEEL电炉生产的小型连轧螺纹钢屈服效应不明显现象的研究[J]. 钢铁, 2004(1): 51-54. Lin Yanmin. Study of implicit yield of re-bar production CONSTEEL-EAF-small continues rolling mill route[J]. Iron & Steel, 2004(1): 51-54. [11]冯浩洲, 王 蓬, 李冬玲, 等. 火车车轮轮辋组织与显微硬度的统计分布表征[J]. 钢铁研究学报, 2022, 34(3): 280-287. Feng Haozhou, Wang Peng, Li Dongling, et al. Statistical distribution characterization of train wheel rim structure and microhardness[J]. Journal of Iron and Steel Research, 2022, 34(3): 280-287. [12]Hong S G, Kang K B, Park C G. Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J]. Scripta Materialia, 2002, 46(2): 163-168. [13]雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006. [14]Chipman J. Thermodynamics and phase diagram of the Fe-C system[J]. Metallurgical and Materials Transactions B, 1972, 3: 55-64. [15]Pickering F B. Physical Metallurgy and the Design of Steels[M]. London: Applied Science Publishers Ltd., 1978. [16]Liu C T, Gurland J. The strengthening mechanism in spheroidized carbon steels[J]. Transaction of the Metallurgical Society of AIME, 1968, 242: 1535-1542. [17]Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels[J]. Materials Science and Engineering: A, 2006, 441(1/2): 1-17. [18]曾泽芸, 李长荣, 黎志英, 等. 终冷温度对高强度抗震钢筋组织和性能的影响[J]. 材料研究学报, 2021, 35(11): 857-865. Zeng Zeyun, Li Changrong, Li Zhiying, et al. Effect of final temperature of cooling on microstructure and properties of aseismic high-strength steel rebar[J]. Chinese Journal of Materials Research, 2021, 35(11): 857-865. [19]李 显, 余志军, 杨跃标, 等. 高性能建筑结构用钢组织性能和强化机理研究[J]. 四川冶金, 2022, 44(1): 11-17. Li Xian, Yu Zhijun, Yang Yuebiao, et al. Study on microstructure, mechanical properties and strengthening mechanisms of high performance steel for building structure[J]. Sichuan Metallurgy, 2022, 44(1): 11-17. [20]惠亚军, 潘 辉, 刘 锟, 等. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946. Hui Yajun, Pan Hui, Liu Kun, et al. Strengthening mechanism of 600 MPa grade Nb-Ti microalloyed high formability crossbeam steel[J]. Acta Metallurgica Sinica, 2017, 53(8): 937-946. [21]Ashby M F. Strengthening Methods in Crystals[M]. London: Applied Science Publishers Ltd., 1971. [22]Olalla V C, Bliznuk V, Sanchez N, et al. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters[J]. Materials Science and Engineering A, 2014, 604: 46-56. [23]Thillou V. Basic metal processing research institute report[R]. Pittsburgh, PA, USA: University of Pittsburgh, 1997. [24]Gladman T. Precipitation hardening in metals[J]. Material Science and Technology, 1999, 15: 30-36. [25]Gladman T. The Physical Metallurgy of Microalloyed Steels[M]. London: The Institute of Materials, 1997. |