[1]Barrau O, Boher C, Gras R, et al. Analysis of the friction and wear behavior of hot work tool steel for forging[J]. Wear, 2003, 255(7): 1444-1454. [2]Cruz M R, Staia M H. Ion nitrided AISI H13 tool steel. Part 2. High temperature performance under sliding wear conditions[J]. Surface Engineering, 2007, 23(3): 223-229. [3]Leite M V, Figueroa C A, Gallo S C, et al. Wear mechanisms and microstructure of pulsed plasma nitrided AISI H13 tool steel[J]. Wear, 2010, 269(5): 466-472. [4]王 荣, 闵永安, 吴晓春. H13钢经不同表面处理后的静态抗铝热熔损性能比较[J]. 金属热处理, 2003, 28(12): 5-8. Wang Rong, Min Yong'an, Wu Xiaochun. Comparison of static anti-melting-loss ability of H13 steel with different surface treatment[J]. Heat Treatment of Metals, 2003, 28(12): 5-8. [5]Rodriguez-Baracaldo R, Benito J A, Puchi-Cabrera E S, et al. High temperature wear resistance of (TiAl)N PVD coating on untreated and gas nitrided AISI H13 steel with different heat treatments[J]. Wear, 2007, 262(3): 380-389. [6]Sen U. Wear properties of niobium carbide coatings performed by method on AISI 1040 steel[J]. Thin Solid Films, 2005, 483(1/2): 152-157. [7]Oriuelag A, Rincon R, Olaya J J, et al. Corrosion resistance of niobium carbide coatings produced on AISI 1045 steel via thermo-reactive diffusion deposition[J]. Surface and Coatings Technology, 2014, 259: 667-675. [8]Yan S J, Wang H F, Sun Q K, et al. Growth characteristics and kinetics of niobium carbide coating obtained on AISI 52100 by thermal-reactive diffusion technique[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2014, 29(4): 808-812. [9]刘秀娟. 模具钢表面TD法制备碳化钒覆层的研究[D]. 武汉: 武汉理工大学, 2007. [10]万 伟, 黄 俊, 罗军明. Cr12MoV钢渗钒层组织及耐磨性能[J]. 中国表面工程, 2015, 28(4): 90-97. Wan Wei, Huang Jun, Luo Junming. Microstructure and wear resistance of vanadizing layer on Cr12MoV steel[J]. China Surface Engineering, 2015, 28(4): 90-97. [11]Castillejo F E, Olaya-Flores J J, Alfonso J E. Wear resistance of vanadium-niobium carbide layers grown via TRD[J]. Dyna, 2015, 82(193): 104-109. [12]Aghaie-Khafri M, Fazlalipour F. Vanadium carbide coatings on die steel deposited by the thermo-reactive diffusion technique[J]. Journal of Physics and Chemistry of Solids, 2008, 69(10): 2465-2470. [13]Fan X S, Yang Z G, Zhang C, et al. Evaluation of vanadium carbide coatings on AISI H13 obtained by thermo-reactive deposition/diffusion technique[J]. Surface and Coatings Technology, 2010, 205(2): 641-646. [14]Ying L, Athar Javed, Jie C, et al. The effect of deposition temperature on the microstructure and mechanical properties of TaC coatings[J]. Materials Letters, 2014, 121: 202-205. [15]孙启坤, 王华昌, 王华君. TD法盐浴渗铌工艺及覆层性能研究[J]. 热加工工艺, 2012, 41(4): 181-184. Sun Qikun, Wang Huachang, Wang Huajun. Research on niobium carbide coating process by TD technique in salt bath and properties of coating[J]. Hot Working Technology, 2012, 41(4): 181-184. [16]Oliverira C K N, Riofano R M M, Casteletti L C. Micro-abrasive wear test of niobium carbide layers produced on AISI H13 and M2 steels[J]. Surface and Coatings Technology, 2006, 200(16/17): 5140-5144. [17]Sen S, Sea U. Sliding wear behavior of niobium carbide coated AISI 1040 steel[J]. Wear, 2008, 264(3): 219-225. [18]张冀翔, 徐修炎, 钱 程, 等. 碳钢表面粉末包埋法渗铝的实验研究[J]. 表面技术, 2018, 47(12): 68-75. Zhang Jixiang, Xu Xiuyan, Qian Cheng, et al. Experimental study on aluminizing of carbon steel surface by pack cementation[J]. Surface Technology, 2018, 47(12): 68-75. [19]时 龙, 齐美娜. K38合金表面粉末包埋法Al-Si共渗研究[J]. 广东化工, 2020, 47(21): 11-12. Shi Long, Qi Meina. Study of Al-Si co-deposition on K38 superalloy by powder cementation process[J]. Guangdong Chemical Industry, 2020, 47(21): 11-12.[20]Wang Q Y, Tang Y R, Pei R, et al. A study on preparation and corrosion behavior of nano rare earth oxide-modified chromized coatings[J]. Materials and Corrosion, 2020, 71(2): 249-257. [21]Li S, Wang R K, You Z Y, et al. Influence of process parameters and rare earth content on the properties of niobium carbide coatings synthesized by pack cementation[J]. Materials Research Express, 2019, 6(11): 116455. [22]Torchane Lazhar. Influence of rare earths on the gas nitriding kinetics of 32CrMoNiV5 steel at low temperature[J]. Surfaces and Interfaces, 2021, 23: 101016. [23]江静华, 蒋建清, 马爱斌, 等. 稀土化学热处理及其发展现状[J]. 中国表面工程, 2003(5): 10-14. Jiang Jinghua, Jiang Jianqing, Ma Aibin, et al. Application of rare earth addition on the chemical heat-treatment[J]. China Surface Engineering, 2003(5): 10-14. [24]濮胜君, 杨浩鹏, 汪宏斌, 等. 稀土对H13钢固体渗硼层高温摩擦磨损性能的影响[J]. 材料研究学报, 2015, 29(7): 481-488. Pu Shengjun, Yang Haopeng, Wang Hongbin, et al. Effect of rare earth Ce on high temperature friction and wear property of pack boronized H13 steel[J]. Chinese Journal of Materials Research, 2015, 29(7): 481-488. [25]黄 瑶, 王雷刚, 李士战, 等. 稀土Y对H13钢表面TiN薄膜高温摩擦磨损性能的影响[J]. 润滑与密封, 2007, 32(4): 55-57. Huang Yao, Wang Leigang, Li Shizhan, et al. Effect of rare earth element yttrium on high-temperature wear and friction performance of TiN film on H13 steel surface[J]. Lubrication Engineering, 2007, 32(4): 55-57. [26]Castillejo F E, Maruland D M, Olay J J, et al. Wear and corrosion resistance of niobium-chromium carbide coatings on AISI D2 produced through TRD[J]. Surface and Coatings Technology, 2014, 254: 104-111. |