[1]蒋中华, 杜军毅, 王 培, 等. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902. Jiang Zhonghua, Du Junyi, Wang Pei, et al. Mechanism of improving the impact toughness of SA508-3 steel used for nuclear power by pre-transformation of M-A islands[J]. Acta Metallurgica Sinica, 2021, 57(7): 891-902. [2]牛 犇, 王镇华, 潘钱付, 等. 核电用铁素体/马氏体耐热钢的性能与成分研究进展[J]. 材料导报, 2020, 34(19): 19141-19151. Niu Ben, Wang Zhenhua, Pan Qianfu, et al. Research progress on properties and composition of ferritic/martensitic heat-resistant steels for nuclear power[J]. Materials Reports, 2020, 34(19): 19141-19151. [3]胡春东, 曾 斌, 董 瀚, 等. 奥氏体化温度对3Cr3Mo2NiVNb钢组织和力学性能的影响[J]. 热加工工艺, 2018, 47(22): 234-236, 247. Hu Chundong, Zeng Bin, Dong Han, et al. Effect of austenitizing temperature on microstructure and mechanical properties of 3Cr3Mo2NiVNb steel[J]. Hot Working Technology, 2018, 47(22): 234-236, 247. [4]Hwang Byoungchul, Suh DongWoo, Kim SungJoon. Austenitizing temperature and hardenability of low-carbon boron steels[J]. Scripta Materialia, 2011, 64(12): 1118-1120. [5]熊国源, 刘利华, 朱文涛. 奥氏体化温度对40CrNiMo钢组织和性能的影响[J]. 中国冶金, 2021, 31(7): 30-37. Xiong Guoyuan, Liu Lihua, Zhu Wentao. Effect of austenitizing temperature on microstructure and mechanical properties of 40CrNiMo steel[J]. China Metallurgy, 2021, 31(7): 30-37. [6]高 野, 任家宽, 李志峰, 等. 奥氏体化温度对900 MPa级HSLA钢显微组织和晶体学演变的影响[J]. 材料研究学报, 2022, 36(1): 21-28. Gao Ye, Ren Jiakuan, Li Zhifeng, et al. Effect of austenitizing temperature on microstructure and crystallographic evolution of 900 MPa grade HSLA steel[J]. Chinese Journal of Materials Research, 2022, 36(1): 21-28. [7]孙宪进, 尚成嘉, 苗丕峰, 等. 奥氏体化温度对低碳低裂纹敏感性海工钢组织与性能的影响[J]. 材料热处理学报, 2020, 41(1): 50-56. Sun Xianjin, Shang Chengjia, Miao Pifeng, et al. Effect of austenitizing temperature on microstructure and properties of low carbon and low crack sensitivity offshore steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(1): 50-56. [8]Martin J W. Precipitation Hardening[M]. Oxford: Pergamon Press, 1968. [9]左龙飞, 倪 睿, 王自东, 等. 低碳高强钢中纳米析出相回火过程中的透射分析[J]. 钢铁研究学报, 2013, 25(3): 39-45. Zhuo Longfei, Ni Rui, Wang Zidong, et al. Nano-precipitates in low carbon high strength steel during the tempering process[J]. Journal of Iron and Steel Research, 2013, 25(3): 39-45. [10]Yu Wentao, Hao Qitang, Wang Qian. Phase transformation behavior of Al9(Mn, Ni)2 eutectic phase during heat treatment at 600 ℃ in Al-4Ni-2Mn alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 1913-1919. [11]Bhadeshia H K D H. Design of ferritic creep-resistant steels[J]. ISIJ International, 2001, 41(6): 626-640. [12]Chang E, Chang C Y, Liu C D. The effect of double austenitization on the mechanical properties of a 0.34C containing low-alloy Ni-Cr-Mo-V steels[J]. Metallurgical and Materials Transactions A, 1994, 25(3): 545-555. [13]师先哲, 杜诗文. LZ50钢静态再结晶机理及元胞自动机模拟[J]. 机械工程学报, 2019, 55(14): 43-52. Shi Xianzhe, Du Shiwen. Static recrystallization mechanism of LZ50 steel and cellular automata simulation[J]. Journal of Mechanical Engineering, 2019, 55(14): 43-52. [14]Lian Yong, Ma Minyu, Zhang Jin, et al. Influence of austenitizing temperature on the microstructure and mechanical properties of an Fe-Cr-Ni-Mo-Ti maraging stainless steel[J]. Journal of Materials Engineering and Performance, 2019, 28(9): 5466-5475. [15]Majumdar S, Gandhi A D, Bisht M S. Low cycle fatigue behaviour of a ferritic steel strengthened with nano-meter sized precipitates[J]. Materials Science and Engineering A, 2019, 756(5): 198-212. |