[1]吴 勉, 张良界, 潘 邻, 等. QPQ技术的现状和发展趋势[C]//第十届全国表面工程大会暨第六届全国青年表面工程论坛论文摘要集(一). 2014: 85. [2]薄鑫涛. 渗氮工艺基本原理、特点及优缺点[J]. 热处理, 2021, 36(4): 5. [3]Lin Yimin, Lu Jian, Wang Liping, et al. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitride AISI321 stainless steel[J]. Acta Materialia, 2006, 54: 5599-5605. [4]Tong W P, Han Z, Wang L M, et al. Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment[J]. Surface and Coatings Technology, 2008, 202: 4957-4963. [5]朱全意, 李双喜, 赵少甫, 等. 离子渗氮技术在工程应用中的研究进展[J]. 热加工工艺, 2019, 48(10): 35-38. Zhu Quanyi, Li Shuangxi, Zhao Shaofu, et al. Research progress of ion nitriding technology in engineering application[J]. Hot Working Technology, 2019, 48(10): 35-38. [6]Li Jingcai, Yang Xingmei, Wang Shukai, et al. A rapid D. C. plasma nitriding technology catalyzed by pre-oxidation for AISI4140 steel[J]. Material Letters, 2014, 116: 199-202. [7]Liu Han, Li Jingcai, Sun Fei, et al. Characterization and effect of pre-oxidation on D. C. plasma nitriding for AISI4140 steel[J]. Vacuum, 2014, 109: 170-174. [8]Wu Yunxia, Wang Hu, Yu Xiaohua, et al. Research progress of plasma nitriding in low-temperature for austenitic stainless steel[J]. Applied Mechanicals and Materials, 2014, 456: 486-489. [9]赵 程, 孙定国, 赵慧丽, 等. 离子氮碳共渗+离子后氧化双重复合处理的研究[J]. 金属热处理, 2004, 29(9): 32-34. Zhao Cheng, Sun Dingguo, Zhao Huili, et al. Duplex treatments of plasma nitrocarburizing and post-oxidation[J]. Heat Treatment of Metals, 2004, 29(9): 32-34. [10]张希平, 王美由, 高中楠, 等. 氮碳共渗+后氧化复合处理的应用研究[J]. 金属热处理, 2017, 42(7): 107-111. Zhang Xiping, Wang Meiyou, Gao Zhongnan, et al. Application research of combined treatment of nitrocarburizing and post-oxidizing[J]. Heat Treatment of Metals, 2017, 42(7): 107-111. [11]孙定国, 赵 程, 韩 莉. 高厚度化合物层的离子氮碳共渗处理[J]. 金属热处理, 2004, 29(2): 37-39. Sun Dingguo, Zhao Cheng, Han Li. High thickness of compound layer in plasma nitrocarburising[J]. Heat Treatment of Metals, 2004, 29(2): 37-39. [12]Lerche W, Edenhofer B, 赖勇来. IPSEN炉子的工艺能生成高耐腐蚀性的后氧化的化合物层[J]. 国外金属热处理, 2004(5): 58-61. [13]李双喜, 陈 琳, 汪美桃, 等. 预氧化+稀土铈对42CrMo钢离子渗氮的影响[J]. 金属热处理, 2021, 46(5): 186-189. Li Shuangxi, Chen Lin, Wang Meitao, et al. Study on plasma nitriding process of 42CrMo steel with preoxidation and rare earth cerium[J]. Heat Treatment of Metals, 2021, 46(5): 186-189. [14]李双喜, 顾 敏, 孙启峰. 预氧化对不同离子渗氮工艺的影响[J]. 金属热处理, 2019, 44(1): 61-64. Li Shuangxi, Gu Min, Sun Qifeng. Effect of pre-oxidation on different ion nitriding processes[J]. Heat Treatment of Metals, 2019, 44(1): 61-64. [15]周潘兵, 周 浪. 氧化层对渗氮动力学的影响[J]. 材料热处理学报, 2005, 26(4): 103-156. Zhou Panbing, Zhou Lang. Effect of oxide layer on kinetics of nitridation[J]. Transactions of Materials and Heat Treatment, 2005, 26(4): 103-156. [16]李景才, 孙 斐, 王树凯, 等. 离子渗氮前预氧化催渗作用及机理[J]. 材料热处理学报, 2014, 35(7): 182-186. Li Jingcai, Sun Fei, Wang Shukai, et al. Catalysis effect and mechanism of pre-oxidation on direct current plasma nitriding[J]. Transactions of Materials and Heat Treatment, 2014, 35(7): 182-186. [17]孙启锋, 李双喜, 李宝奎, 等. 预氧化对40CrNiMo钢离子渗氮渗速及组织的影响[J]. 金属热处理, 2019, 44(3): 145-148. Sun Qifeng, Li Shuangxi, Li Baokui, et al. Effect of pre-oxidation on ionic nitriding speed and microstructure of 40CrNiMo steel[J]. Heat Treatment of Metals, 2019, 44(3): 145-148. [18]孟 璇, 姚小卫, 孔令飞. 渗氮后氧化技术的适用性分析[J]. 金属热处理, 2021, 46(6): 126-128. Meng Xuan, Yao Xiaowei, Kong Lingfei. Analysis on applicability of nitriding and post-oxidating technology[J]. Heat Treatment of Metals, 2021, 46(6): 126-128. [19]周孝重, 陈大凯. 等离子体热处理技术[M]. 北京: 机械工业出版社, 1990: 80-85. [20]陈留根. 离子渗氮的原理与应用(译文综述)[J]. 电炉, 1974(2): 51-58. |