[1]杨 颖, 张 哲, 侯华兴, 等. 不同屈强比Q500qE桥梁钢的疲劳裂纹扩展速率[J]. 金属热处理, 2018, 43(7): 229-232. Yang Ying, Zhang Zhe, Hou Huaxing, et al. Fatigue crack growth rate of different yield ratio bridge steel Q500qE[J]. Heat Treatment of Metals, 2018, 43(7): 229-232. [2]余宏伟, 黄大军, 董中波, 等. 轧制工艺对高强度桥梁钢厚板低温韧性的影响[J]. 热加工工艺, 2022, 51(17): 30-34. Yu Hongwei, Huang Dajun, Dong Zhongbo, et al. Effects of rolling process on low temperature toughness of high strength bridge heavy steel plate[J]. Hot Working Technology, 2022, 51(17): 30-34. [3]陈焕德, 刘东升. TMCP型Q500qENH特厚耐候桥梁钢板的工业试制[J]. 钢铁, 2014, 49(4): 69-75. Chen Huande, Liu Dongsheng. Industrial run to produce TMCP processed Q500qENH weathering heavy plate for bridge[J]. Iron and Steel, 2014, 49(4): 69-75. [4]陈章红, 李中平, 熊祥江, 等. 高性能桥梁结构用钢Q500qE的开发[J]. 金属材料与冶金工程, 2022, 50(1): 21-25. Chen Zhanghong, Li Zhongping, Xiong Xiangjiang, et al. Development of high performance Q500qE steel for bridge structure[J]. Metal Materials and Metallurgy Engineering, 2022, 50(1): 21-25. [5]武凤娟, 杨 浩, 曲锦波. 强化机制对高强度桥梁钢Q500qE屈强比的影响[J]. 中国冶金, 2020, 30(12): 52-58. Wu Fengjuan, Yang Hao, Qu Jinbo. Effect of strengthening mechanism on yield ratio of high strength Q500qE bridge steel[J]. China Metallurgy, 2020, 30(12): 52-58. [6] Lamber A, Drillet J, Gourues A F, et al. Microstructure of M-A constituent in HAS of HSLA steel welds in relation with toughness properties[J]. Science and Technology of Welding and Joining, 2000, 5: 1-13. [7] Wang Y, Wang Q, Liu L, et al. Fracture mode of martensite-austenite constituents containing multiphase steel controlled by microstructural and micromechanical aspects[J]. Mechanics of Advanced Materials & Structures, 2015, 22(7): 591-200. [8]于庆波, 赵贤平, 孙 斌, 等. 高层建筑用钢板的屈强比[J]. 钢铁, 2007, 42(11): 74-78. Yu Qingbo, Zhao Xianping, Sun Bin, et al. Yield-strength ratio of steel plate for high-rise building[J]. Iron and Steel, 2007, 42(11): 74-78. [9]陈忠孝, 陈字刚, 徐绍山, 等. M-A岛状组织对12Ni3MoV低温钢焊接热影响区的韧性的影响[J]. 大连铁道学院学报, 1984(1): 13-26. Chen Zhongxiao, Chen Zigang, Xu Shaoshan, et al. The effect of M-A isle constituent on toughness in HAZ of low temperature steel 12Ni3MoV[J]. Journal of Dalian Jiaotong University, 1984(1): 13-26. [10]狄国标, 周砚磊, 姜中行, 等. 轧后冷却工艺对海洋平台用钢组织性能的影响[J]. 材料热处理学报, 2011, 32(10): 56-61. Di Guobiao, Zhou Yanlei, Jiang Zhongxing, et al. Effect of cooling mode on microstructure and mechanical properties of offshore platform steel[J]. Transactions of Materials and Heat Treatment, 2011, 32(10): 56-61. [11]卢 敏, 周晓光, 刘振宇, 等. 冷却工艺对X80级抗大变形管线钢组织性能的影响[J]. 材料热处理学报, 2011, 32(7): 83-88. Lu Min, Zhou Xiaoguang, Liu Zhenyu, et al. Effect of cooling mode on microstructure and mechanical properties of high-strain pipeline steel X80[J]. Transactions of Materials and Heat Treatment, 2011, 32(7): 83-88. [12]张 楠, 田志凌, 张书彦, 等. Q700D热影响粗晶区疲劳寿命与小裂纹扩展分析[J]. 钢铁研究学报, 2019, 31(8): 741-747. Zhang Nan, Tian Zhiling, Zhang Shuyan, et al. Prediction of fatigue life and behavior analysis of small crack propagation in CGHAZ of Q700D[J]. Journal of Iron and Steel Research, 2019, 31(8): 741-747. [13]程 石, 胡 锋, 王亚超, 等. 回火热处理对低碳高强度钢低温冲击韧性的影响[J]. 材料热处理学报, 2020, 41(12): 80-89. Cheng Shi, Hu Feng, Wang Yachao, et al. Effect of tempering heat treatment on low-temperature impact toughness of low-carbon high-strength steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(12): 80-89. |