[1]赵连城. 合金的形状记忆效应与超弹性[M]. 北京: 国防工业出版社, 2002. [2]杨建楠, 黄 彬, 谷小军, 等. 形状记忆合金力学行为与应用综述[J]. 固体力学学报, 2021, 42(4): 345-375. Yang Jiannan, Huang Bin, Gu Xiaojun, et al. A review of shape memory alloys: mechanical behavior and application[J]. Chinese Journal of Solid Mechanics, 2021, 42(4): 345-375. [3]牛豪杰, 林成新. 形状记忆合金的应用现状综述[J]. 天津理工大学学报, 2020, 36(4): 1-6. Niu Haojie, Lin Chengxin. Review of shape memory alloy application status[J]. Journal of Tianjin University of Technology, 2020, 36 (4): 1-6. [4]刘洪涛, 孙光爱, 王沿东, 等. 冲击诱发NiTi形状记忆合金相变行为研究[J]. 物理学报, 2013(1): 480-486. Liu Hongtao, Sun Guangai, Wang Yandong, et al. Shock-induced transformation behavior in NiTi shape memory alloy[J]. Acta Physica Sinica, 2013 (1): 480-486. [5]王 嫒, 唐 娟, 崔振铎, 等. Ni-Ti形状记忆合金性能及表面活化研究进展[J]. 金属热处理, 2004, 29(12): 40-45. Wang Yuan, Tang Juan, Cui Zhenduo, et al. Properties and bioactive surface engineering on nickel-titanium shape memory alloy[J]. Heat Treatment of Metals, 2004, 29(12): 40-45. [6]蔡 伟, 孟祥龙, 赵新青, 等. TiNi基高温形状记忆合金的马氏体相变与形状记忆效应[J]. 中国材料进展, 2012, 31(12): 40-47. Cai Wei, Meng Xianglong, Zhao Xinquan, et al. Martensitic transformation and shape memory effect of Ti-Ni based high temperature shape memory alloys[J]. Materials China, 2012, 31 (12): 40-47. [7]李启泉, 李 岩, 马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 148-153. Li Qiquan, Li Yan, Ma Yuehui. Research progress of titanium-based high-temperature shape memory alloy[J]. Material Reports, 2020, 34(3): 148-153. [8]Ma J, Karaman I, Noebe R D. High temperature shape memory alloys[J]. International Materials Reviews, 2010, 55(5): 257-315. [9]衣晓洋, 孟祥龙, 蔡 伟, 等. Ti-Ni-Hf高温形状记忆合金的研究进展[J]. 材料工程, 2021, 49(3): 31-40. Yi Xiaoyang, Meng Xianglong, Cai Wei, et al. Research progress in Ti-Ni-Hf high temperature shape memory alloys[J]. Journal of Materials Engineering, 2021, 49(3): 31-40. [10]Prasad R V S, Park C H, Kim S W, et al. Microstructure and phase transformation behavior of a new high temperature NiTiHf-Ta shape memory alloy with excellent formability[J]. Journal of Alloys and Compounds, 2017, 697: 55-61. [11]Kim H Y, Jinguu T, Nam T H, et al. Cold workability and shape memory properties of novel Ti-Ni-Hf-Nb high-temperature shape memory alloys[J]. Scripta Materialia, 2011, 65(9): 846-849. [12]Chen J, Zhang S, Zhang Y, et al. A study on the cold workability and shape memory effect of NiTiHf-Nb eutectic high-temperature shape memory alloy[J]. Intermetallics, 2020, 127: 106982. [13]Simon T, Kröger A, Somsen C, et al. On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys[J]. Acta Materialia, 2010, 58(5): 1850-1860. [14]Gao Y, Cesalena L, Bowers M L, et al. An origin of functional fatigue of shape memory alloys[J]. Acta Materialia, 2017, 126: 389-400. [15]刘礼华, 郑玉峰, 王利明, 等. NiTiHf高温形状记忆合金的相变行为和形状记忆效应[J]. 功能材料, 2003, 34(1): 48-50. Liu Lihua, Zheng Yufeng, Wang Liming, et al. Martensite transformation and shape memory properties of NiTiHf high temperature shape memory alloy[J]. Journal of Functional Materials, 2003, 34(1): 48-50. [16]Cai W, Otsuka K. Martensite aging effect in a Ti50Pd50 high temperature shape memory alloy[J]. Scripta Materialia, 1999, 41(12): 1311-1317. |