[1]娄德春, 崔 崑, 吴晓春. 轧制工艺参数对硫化锰夹杂物相对塑性的影响[J]. 钢铁研究, 1996(5): 26-28, 47. Lou Dechun, Cui Kun, Wu Xiaochun. Effect of technology rolling parameters on relative plasticity of slags MnS[J]. Research on Iron and Steel, 1996(5): 26-28, 47. [2]王英虎. 轧制变形对含硫易切削钢中硫化物的影响[J]. 锻压技术, 2020, 45(11): 120-125. Wang Yinghu. Influence of rolling deformation on sulfide in free-cutting steel containing sulfur[J]. Forging and Stamping Technology, 2020, 45(11): 120-125. [3]Liu X G, Wang C, Gui J T, et al. Effect of MnS inclusions on deformation behavior of matrix based on in-situ experiment[J]. Materials Science and Engineering A, 2019, 746: 239-247. [4]孟军龙. 碳锰钢中MnS夹杂物的控制及应用实践[J]. 大型锻件, 2021(5): 9-12. Meng Junlong. Control and application practice of MnS inclusions in carbon manganese steel[J]. Heavy Casting and Forging, 2021(5): 9-12. [5]Mcmahon C J, Cohen M. Initiation of cleavage in polycrystalline iron[J]. Acta Metallurgica, 1965, 13(6): 591-604. [6]Shu W, Wang X, Shang C, et al. The influence of oxide inclusion on austenite grain size and heat affected zone toughness for low carbon steels[J]. Materials Science Forum, 2012, 715-716: 617-622. [7]王苗苗, 曾燕屏, 王习术, 等. 拉伸载荷作用下AlN夹杂物对航空用超高强度钢中裂纹萌生的影响[J]. 钢铁研究学报, 2008, 20(7): 46-49, 59. Wang Miaomiao, Zeng Yanping, Wang Xishu, et al. Influence of characteristic inclusion parameters on crack initiation in ultra-high strength steel under tensile load[J]. Journal of Iron and Steel Research, 2008, 20(7): 46-49, 59. [8]牛跃威, 徐子谦, 陈四平, 等. 包装用热轧低碳带钢的开发[J]. 河北冶金, 2019(5): 40-42, 67. Niu Yuewei, Xu Ziqian, Chen Siping, et al. Research and development of hot rolled low carbon steel used for packaging[J]. Hebei Metallurgy, 2019(5): 40-42, 67. [9]娄德春, 崔 昆, 吴晓春, 等. 硫化物夹杂物的热变形行为[J]. 钢铁研究学报, 1996, 8(6): 11-14. Lou Dechun, Cui Kun, Wu Xiaochun, et al. Behavior of MnS inclusions during hot deformation[J]. Journal of Iron and Steel Research, 1996, 8(6): 11-14. [10]刘 帅. 热加工工艺对冷镦用齿轮钢FAS3420H硫化物形态及组织与性能的影响[D]. 北京: 北京科技大学, 2021. Liu Shuai. Effect of hot working technology on sulfide morphology, microstructure and properties of cold heading gear steel FAS3420H[D]. Beijing: University of Science and Technology Beijing, 2021. [11]李红斌, 徐树成, 冯运莉, 等. 退火工艺对冷轧中碳钢组织与力学性能的影响[J]. 钢铁, 2016, 51(11): 61-67, 72. Li Hongbin, Xu Shucheng, Feng Yunli, et al. Influence of annealing process on microstructure and mechanical property of cold rolled medium carbon steel[J]. Iron and Steel, 2016, 51(11): 61-67, 72. [12]Li Hongbin, Fan Lifeng, Chen Liansheng, et al. Effect of cooling mode on the microstructure and mechanical properties of medium carbon steel after warm rolling[J]. Ironmaking and Steelmaking, 2019, 47(9): 1022-1028. [13]Hosseini S B, Temmel C, Karlsson B, et al. An in-situ scanning electron microscopy study of the bonding between MnS inclusions and the matrix during tensile deformation of hot-rolled steels[J]. Metallurgical and Materials Transactions A, 2007, 38(5): 982-989. [14]Ohira T, Pao Y H. Microcrack initiation and acoustic emission during fracture toughness tests of A533B steel[J]. Metallurgical and Materials Transactions A, 1986, 17(5): 843-852. [15]Jia N N, Guo K, He Y M, et al. A thermomechanical process to achieve mechanical properties comparable to those of quenched-tempered medium-C steel[J]. Materials Science and Engineering, 2017, 700: 175-182. [16]Mandal G K, Ashok K, Das S K, et al. Development of stretch flangeable grade steels by inclusion engineering approach[J]. Journal of Materials Engineering and Performance, 2018, 27(11): 5622-5630. |