[1]Liu Lei, Wu Yunxin, Gong Hai, et al. Modification of constitutive model and evolution of activation energy on 2219 aluminum alloy during warm deformation process[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3): 448-459. [2]张 华, 张 贺, 孙大同, 等. 2219铝合金母材及搅拌摩擦焊接头应力腐蚀敏感性[J]. 焊接学报, 2014, 35(12): 7-10. Zhang Hua, Zhang He, Sun Datong, et al. Stress corrosion cracking susceptibility of 2219 aluminum alloy parent metal and its friction stir weldment[J]. Transactions of the China Welding Institution, 2014, 35(12): 7-10. [3]钟立伟, 冯朝辉, 高文理, 等. 多轴锻造与T852热处理对Al-Cu-Li合金组织及力学性能的影响[J]. 金属热处理, 2022, 47(9): 79-86. Zhong Liwei, Feng Zhaohui, Gao Wenli, et al. Effects of multi-axial forging and T852 heat treatment on microstructure and mechanical properties of Al-Cu-Li alloy[J]. Heat Treatment of Metals, 2022, 47(9): 79-86. [4]Wilshire E B B, Owen D R J. Proceedings of the second international conference on creep and fracture of engineering materials and structures[J]. Materials Characterization, 1984, 33(1): 375-382. [5]Sigler D, Montpetit M C, Haworth W L. Metallography of fatigue crack initiation in an overaged high-strength aluminum alloy[J]. Metallurgical and Materials Transactions A, 1983, 14(4): 931-938. [6]马冬威, 王 敏, 胡志华. 固溶处理对7A09铝合金组织和力学性能的影响[J]. 金属热处理, 2014, 39(1): 38-41. Ma Dongwei, Wang Min, Hu Zhihua. Effects of solid solution treatment on microstructure and mechanical properties of 7A09 aluminum alloy[J]. Heat Treatment of Metals, 2014, 39(1): 38-41. [7]Liang Sun, Zhang Qingchuan, Jiang Huifeng. Effect of solute concentration on Portevin-Le Chatelier effect in Al-Cu alloys[J]. Frontiers of Materials Science in China, 2007, 1(2): 173-176. [8]郝云飞, 侯 明, 韩忠帅, 等. 2219薄板铝合金浮动式双轴肩搅拌摩擦焊接及组织性能分析[J]. 宇航材料工艺, 2020, 50(1): 63-70. Hao Yunfei, Hou Ming, Han Zhongshuai, et al. Analysis of weld structure and mechanical property for 2219 thin aluminum alloy joints welded by floating bobbin friction stir welding[J]. Aerospace Materials Technology, 2020, 50(1): 63-70. [9]李小霞, 黄 亮, 李建军, 等. 搅拌摩擦焊和热处理复合工艺对2219铝合金组织性能的影响[J]. 中国机械工程, 2017, 28(23): 2880-2888. Li Xiaoxia, Huang Liang, Li Jianjun, et al. Effects of compound technology of FSW and heat treatment on microstructures and properties of 2219 aluminum alloys[J]. China Mechanical Engineering, 2017, 28(23): 2880-2888. [10]吴鸿燕, 邢 丽, 陈玉华, 等. 2219铝合金搅拌摩擦焊接头的断裂部位特征[J]. 金属热处理, 2011, 36(5): 90-93. Wu Hongyan, Xing Li, Chen Yuhua, et al. Fracture location characteristics of 2219 aluminum alloy friction stir welded joints[J]. Heat Treatment of Metals, 2011, 36(5): 90-93. [11]赵浩东, 张志峰, 白月龙, 等. 内置电磁熔体处理对大规格2219铝合金铸锭组织的影响[J]. 特种铸造及有色合金, 2021, 41(7): 826-830. Zhao Haodong, Zhang Zhifeng, Bai Yuelong, et al. Effects of internal electromagnetic melt treatment on microstructure refinement of large scale 2219 aluminum alloy billet[J]. Special Casting and Nonferrous Alloys, 2021, 41(7): 826-830. [12]周蓉蓉, 贺爱国, 方华婵, 等. 预变形量对2219铝合金的力学性能及显微组织影响[J]. 材料热处理学报, 2016, 37(4): 45-49. Zhou Rongrong, He Aiguo, Fang Huachan, et al. Effects of pre-deformation on microstructure and mechanical properties of 2219 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2016, 37(4): 45-49. [13]An Lihui, Cai Yang, Liu Wei, et al. Effects of pre-deformation on microstructure and mechanical properties of 2219 aluminum alloy sheet by thermomechanical treatment[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(S2): 370-375. [14]Papazian J M. A calorimetric study of precipitation in aluminum alloy 2219[J]. Metallurgical Transactions A, 1981, 12(2): 269-280. [15]Lin Chong, Wu Shusen, Lü Hulin, et al. Effects of high pressure rheo-squeeze casting on Fe-containing intermetallic compounds and mechanical properties of Al-17Si-2Fe-(0, 0.8)V alloys[J]. Materials Science and Engineering A, 2017, 713(24): 105-111. [16]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2000. |