[1]《世界汽车车身技术及轻量化技术发展研究》编委会. 世界汽车车身技术及轻量化技术发展研究[M]. 北京: 北京理工大学出版社, 2019: 34-37.
[2]江海涛, 唐 荻, 米振莉. 汽车用先进高强度钢的开发及应用进展[J]. 钢铁研究学报, 2007, 19(8): 1-6.
Jiang Haitao, Tang Di, Mi Zhenli. Latest progress in development and application of advanced high strength steels for automobiles[J]. Journal of Iron and Steel Research, 2007, 19(8): 1-6.
[3]Karbasian H, Tekkaya A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15): 2103-2118.
[4]Merklein M, Wieland M, Lechner M, et al. Hot stamping of boron steel sheets with tailored properties: A review[J]. Journal of Materials Processing Technology, 2016, 228: 11-24.
[5]Wang Z, Wang K, Liu Y, et al. Multi-scale simulation for hot stamping quenching & partitioning process of high-strength steel[J]. Journal of Materials Processing Technology, 2019, 269: 150-162.
[6]董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术[J]. 钢铁, 2010(7): 1-7.
Dong Han, Wang Maoqiu, Weng Yuqing. Performance improvement of steels through M3 structure control[J]. Iron and Steel, 2010(7): 1-7.
[7]王存宇, 常 颖, 周峰峦, 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术[J]. 金属学报, 2020, 56(4): 400-410.
Wang Cunyu, Chang Ying, Zhou Fengluan, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility[J]. Acta Metallurgica Sinica, 2020, 56(4): 400-410.
[8]Salas-Reyes A E, Mejía I, Bedolla-Jacuinde A, et al. Hot ductility behavior of high-Mn austenitic Fe-22Mn-1.5Al-1.5Si-0.45C TWIP steels microalloyed with Ti and V[J]. Materials Science and Engineering: A, 2014, 611: 77-89.
[9]Irvine K J, Pickering F B. Grain-refined C-Mn steels[J]. The Iron and Steel Institute of Japan, 1967, 205: 161-182.
[10]Lee C H, Park J Y, Chung J H, et al. Hot ductility of medium carbon steel with vanadium[J]. Materials Science and Engineering A, 2016, 651: 192-197.
[11]Sun Y, Zeng Y, Cai K. Hot ductility of Ti-V bearing microalloyed steel in continuous casting[J]. Journal of Iron and Steel Research International, 2014, 21(4): 451-458.
[12]葛 锐, 杨 睿, 刘子奇, 等. V对中锰热成形钢性能的影响及其强化机制[J]. 钢铁研究学报, 2022, 34(8): 782-789.
Ge Rui, Yang Rui, Liu Ziqi, et al. Effect of vanadium on mechanical properties of medium-Mn based hot stamping steel and corresponding strengthening mechanism[J]. Journal of Iron and Steel Research, 2022, 34(8): 782-789.
[13]马鸣图, 蒋松蔚, 李光瀛, 等. 热冲压成形钢的研究进展[J]. 机械工程材料, 2020, 44(7): 1-7, 27.
Ma Mingtu, Jiang Songwei, Li Guangying, et al. Research progress on hot stamping steel[J]. Materials for Mechanical Engineering, 2020, 44(7): 1-7, 27.
[14]王存宇, 时 捷, 惠卫军, 等. 提高热成形钢塑性的工艺研究[J]. 锻压技术, 2011, 36(2): 128-130.
Wang Cunyu, Shi Jie, Hui Weijun, et al. Process research on improving hot stamping steel ductility[J]. Forging and Stamping Technology, 2011, 36(2): 128-130.
[15]陈 林, 魏 然, 韩彩霞. Q345B 稀土铸钢在第三类脆性塑性谷底区组织变化规律的研究[J]. 热加工工艺, 2014, 43(10): 105-107.
Chen Lin, Wei Ran, Han Caixia. Microstructure change law on rare earth cast steel Q345B in third class brittle plastic bottom area[J]. Hot Working Technology, 2014, 43(10): 105-107.
[16]Zhang M, Zhao X, Zhu Y, et al. Hot ductility of low carbon Nb-microalloyed weathering steel[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2014, 887: 200-206.
[17]Xu T D, Cheng B Y. Kinetics of non-equilibrium grain-boundary segregation[J]. Progress in Materials Science, 2004, 49: 109-208.
[18]Xu T D. A model for intergranular segregation/dilution induced by applied stress[J]. Journal of Materials Science, 2000, 35: 5621-5628. |