[1]王冬冬, 姚彦军, 秦卫东. 锻造生产过程控制对TC21锻件组织和性能的影响[J]. 锻造与冲压, 2022(7): 65-68. Wang Dongdong, Yao Yanjun, Qin Weidong. Influence of forging process control on microstructure and properties of TC21 forgings[J]. Forging and Metalforming, 2022(7): 65-68. [2]Zhang Yu, Xin Renlong, Guo Baoqi, et al. Influence of alternate grain boundary α on the development of Widmansttten microstructure in TC21 Ti alloy[J]. Materials Characterization, 2021, 177: 111162-111172. [3]Wang Ke, Wu Mingyu, Ren Zhao, et al. Static globularization and grain morphology evolution of α and β phases during annealing of hot-rolled TC21 titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(9): 2664-2676. [4]Sheremetyev V, Churakova A, Derkach M, et al. Effect of ECAP and annealing on structure and mechanical properties of metastable beta Ti-18Zr-15Nb (at. %) alloy[J]. Materials Letters, 2021, 305: 130760-130763. [5]Azizi N, Mahmudi R. Microstructure, texture, and mechanical properties of the extruded and multi-directionally forged Mg-xGd alloys[J]. Materials Science and Engineering A, 2021, 817: 141385-141397. [6]Guo Lianggang, Fan Xiaoguang, Yu Gaofeng, et al. Microstructure control techniques in primary hot working of titanium alloy bars: A review[J]. Chinese Journal of Aeronautics, 2016, 29(1): 30-40. [7]Wang Le, Ma Hao, Fan Qunbo, et al. Simultaneously enhancing strength and ductility of Ti-6Al-4V alloy with the hierarchical structure via a novel thermal annealing treatment[J]. Materials Characterization, 2021, 176: 111112-111117. [8]吕逸帆, 符 浩, 张云浩, 等. 锻造及热处理工艺对Ti80钛合金棒材组织和性能的影响[J]. 热加工工艺, 2021, 50(9): 81-83, 89. Lü Yifan, Fu Hao, Zhang Yunhao, et al. Effect of forging and heat treatment process on microstructure and properties of Ti80 titanium alloy bars[J]. Hot Working Technology, 2021, 50(9): 81-83, 89. [9]Heczel A, Akbaripanah F, Salevati M A, et al. A comparative study on the microstructural evolution in AM60 alloy processed by ECAP and MDF[J]. Journal of Alloys and Compounds, 2018, 763: 629-637. [10]王 杨, 曾卫东, 马 雄, 等. BT25钛合金在两相区变形过程中的显微组织定量分析[J]. 中国有色金属学报, 2013, 23(7): 1861-1865. Wang Yang, Zeng Weidong, Ma Xiong, et al. Quantitative metallography analysis of microstructure of BT25 titanium alloy deformed in two-phase field[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(7): 1861-1865. [11]Li Xin, Deng Siying, Wang Songwei, et al. Dynamic globularization mechanism during hot working of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with lamellar microstructure[J]. Materials Characterization, 2021, 171: 110749-110759. [12]Xu Jianwei, Zeng Weidong, Zhang Xiaoyong, et al. Analysis of globularization modeling and mechanisms of alpha/beta titanium alloy[J]. Journal of Alloys and Compounds, 2019, 788: 110-117. [13]Tao Cheng, Ouyang Delai, Cui Xia, et al. Experimental study and numerical simulation of α lamellar globularization for TC21 titanium alloy during multidirectional forging[J]. Materials Research Express, 2022, 9(8): 6509-6523. [14]Guo Baoqi, Jonas J. Dynamic transformation during the high temperature deformation of titanium alloys[J]. Journal of Alloys and Compounds, 2021, 884(6): 161179-161194. [15]Shi Zhifeng, Guo Hongzhen, Han Jinyang, et al. Microstructure and mechanical properties of TC21 titanium alloy after heat treatment[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(10): 2882-2889. [16]徐 洲, 赵连城. 金属固态相变原理[M]. 北京: 科学出版社, 2004: 7-8. [17]Nag S, Banerjee R, Srinivasan R, et al. ω-assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy[J]. Acta Materialia, 2009, 57(7): 2136-2147. [18]Sergey Zherebtsov, Gennady Salishchev, Lee Semiatin S. Loss of coherency of the alpha/beta interface boundary in titanium alloys during deformation[J]. Philosophical Magazine Letters, 2010, 90(12): 903-914. [19]Gao Jun, Li Miaoquan, Li Xiaodi, et al. Quantitative analysis on microstructure evolution of Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy during isothermal compression[J]. Rare Metals, 2015, 9: 625-631. |