[1]刘 倩, 郑小平, 张荣华, 等. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220. Liu Qian, Zheng Xiaoping, Zhang Ronghua, et al. Medium manganese high strength steel for automotive application: Status quo and prospects[J]. Materials Reports, 2019, 33(7): 1215-1220. [2]徐 鹏. 汽车钢制车轮有限元分析与疲劳寿命预测[D]. 柳州: 广西科技大学, 2014. [3]董 存, 孙小明. 汽车车轮钢圈用热轧钢及其生产工艺[J]. 内燃机与配件, 2021(12): 42-43. Dong Cun, Sun Xiaoming. Hot-rolled steel for automotive wheel rims and their production processes[J]. Internal Combustion Engine and Parts, 2021(12): 42-43. [4]徐 勇, 曾祥成, 田亚强, 等. 冷轧双相钢板材的力学性能各向异性实验研究[J]. 塑性工程学报, 2021, 28(7): 124-130. Xu Yong, Zeng Xiangcheng, Tian Yaqiang, et al. Experimental study on anisotropy of mechanical properties of cold-rolled dual-phase steel sheet[J]. Journal of Plasticity Engineering, 2021, 28(7): 124-130. [5]张爱梅, 赵 亮, 吾 塔. 汽车车轮用B530CL研制开发[J]. 新疆钢铁, 2016(3): 10-14. Zhang Aimei, Zhao Liang, Wu Ta. Research and development of B530CL for automotive wheels[J]. Xinjiang Iron and Steel, 2016(3): 10-14. [6]肖 尧. 500 MPa Nb-Ti微合金高强度汽车车轮钢510CL开发和使用性能[J]. 特殊钢, 2018, 39(6): 62-65. Xiao Yao. Development and application performance of 500 MPa Nb-Ti microalloying high strength steel 510CL for auto wheel[J]. Special Steel, 2018, 39(6): 62-65. [7]谢利群, 毛新平, 霍向东. Ti对钢的组织性能的影响[J]. 冶金丛刊, 2005(1): 1-4. Xie Liqun, Mao Xinping, Huo Xiangdong. Effect of Ti on microstructure and property of steel[J]. Metallurgical Collections, 2005(1): 1-4. [8]包 阔, 肖运昌, 程玉君, 等. C490CL高强车轮用钢的开发与生产实践[J]. 河北冶金, 2017(4): 44-47. Bao Kuo, Xiao Yunchang, Cheng Yujun, et al. Development and production practice of high strength steel C490CL for automotive wheel[J]. Hebei Metallurgy, 2017(4): 44-47. [9]马海涛, 吴 迪, 吴 钢. 重载汽车轮辐钢带(板)的研制[J]. 钢铁, 2008(7): 64-67. Ma Haitao, Wu Di, Wu Gang. Development of a steel for truck wheel spoke[J]. Iron and Steel, 2008(7): 64-67. [10]吴菊环, 叶晓喻, 李正荣, 等. 高强度汽车车轮用P490CL热轧钢板研制[C]//第七届(2009)中国钢铁年会大会论文集(中). 北京: 冶金工业出版社, 2009: 274-280. [11]张志强, 柳风林, 李 斌, 等. 基于CSP产线车轮轮辋钢的开发[J]. 四川冶金, 2020, 42(2): 43-46. Zhang Zhiqiang, Liu Fenglin, Li Bin, et al. Development of wheel rim steel based on CSP process[J]. Sichuan Metallurgy, 2020, 42(2): 43-46. [12]代 鑫. 核压力容器用大锻件SA508-Ⅳ钢疲劳性能的研究[D]. 北京: 北京科技大学, 2021. [13]栾士双, 毕洪志, 翟利伟, 等. 车轮钢TG 380CL的研制与开发[J]. 汽车工艺与材料, 2012(3): 57-59. Luan Shishuang, Bi Hongzhi, Zhai Liwei, et al. Development of wheel steel TG 380CL[J]. Automobile Technology and Material, 2012(3): 57-59. [14]侯续廷. 基于热轧1700产线的高强度车轮钢420CL的产品设计研发[J]. 黑龙江科技信息, 2015(22): 24. Hou Xuting. Product design and development based on hot-rolled 1700 production line high-strength wheel steel 420CL[J]. Scientific and Technological Innovation, 2015(22): 24. [15]YB/T 4151—2015, 汽车车轮用热轧钢板和钢带[S]. [16]赵刚毅, 刘社牛, 孙玉强, 等. 车轮钢AG400CL的研制与开发[J]. 河南冶金, 2009, 17(2): 14-15. Zhao Gangyi, Liu Sheniu, Sun Yuqiang, et al. Development of wheel steel AG400CL[J]. Henan Metallurgy, 2009, 17(2): 14-15. [17]刘振伟, 田 鹏, 王志太, 等. 连铸枝晶偏析对X80管线钢力学性能的影响[J]. 焊管, 2014, 37(6): 31-36. Liu Zhenwei, Tian Peng, Wang Zhitai, et al. Effect of casting dendritic segregation on mechanical properties of X80 pipeline steel[J]. Welded Pipe and Tube, 2014, 37(6): 31-36. [18]严春莲, 鞠新华, 其其格, 等. 高温加热制度对380CL连铸板坯枝晶偏析及轧材带状组织的影响[J]. 冶金分析, 2016, 36(9): 1-8. Yan Chunlian, Ju Xinhua, Qi Qige, et al. Influence of high temperature heating schedule on the dendritic segregation and rolling banded microstructure of 380CL continuous cast stab[J]. Metallurgical Analysis, 2016, 36(9): 1-8. [19]田亚强, 张明山, 宋进英, 等. 常见钢板分层缺陷的成因及整改措施[J]. 钢铁钒钛, 2016, 37(2): 154-158. Tian Yaqiang, Zhang Mingshan, Song Jinying, et al. Cause and improvement measures of common lamination defect of steel plate[J]. Iron Steel Vanadium Titanium, 2016, 37(2): 154-158. [20]陈连生, 齐祥羽, 宋进英, 等. 65Mn锯片用钢硬度不均原因分析[J]. 钢铁钒钛, 2015, 36(5): 134-138. Chen Liansheng, Qi Xiangyu, Song Jinying, et al. Analysis on non-uniform hardness in saw blade of 65Mn steel[J]. Iron Steel Vanadium Titanium, 2015, 36(5): 134-138. [21]宋进英, 齐祥羽, 陈连生, 等. 40Mn钢链片断裂原因分析及改进措施[J]. 金属热处理, 2015, 40(9): 209-214. Song Jinying, Qi Xiangyu, Chen Liansheng, et al. Cause analysis of fractured 40Mn steel chain and counter measures[J]. Heat Treatment of Metals, 2015, 40(9): 209-214. [22]沈永革, 陈连生, 宋进英, 等. 石油套管用钢带状组织研究[J]. 钢铁钒钛, 2012, 33(4): 101-106. Shen Yongge, Chen Liansheng, Song Jinying, et al. Research on banded microstructure of steel for oil casing pipe[J]. Iron Steel Vanadium Titanium, 2012, 33(4): 101-106. [23]肖广耀, 宋进英, 田亚强, 等. 硫化物夹杂及成分偏析对610L钢冷弯开裂的影响[J]. 河北联合大学学报(自然科学版), 2012, 34(3): 71-74. Xiao Guangyao, Song Jinying, Tian Yaqiang, et al. Segregation and sulphide inclusions infuence on cracking of cold-formed for 610L[J]. Journal of North China University of Science and Technology(Natural Science Edition), 2012, 34(3): 71-74. [24]田亚强, 宋进英, 魏英立, 等. 控轧控冷工艺对J55石油套管用钢带状组织影响[J]. 塑性工程学报, 2011, 18(6): 110-114. Tian Yaqiang, Song Jinying, Wei Yingli, et al. Influence of controlled rolling and cooling on banded structure of J55 oil casing[J]. Journal of Plasticity Engineering, 2011, 18(6): 110-114. [25]李合意, 王 毅, 杨 浩, 等. 汽车活塞杆用45钢魏氏组织预防措施以及工艺优化[J]. 特殊钢, 2021, 42(5): 69-71. Li Heyi, Wang Yi, Yang Hao, et al. Preventive measures of Widmanstätten structure of 0.45%C steel for automobile piston rod and process optimization[J]. Special Steel, 2021, 42(5): 69-71. [26]张明博, 刘效云, 高建国, 等. C380CL钢车轮焊缝开裂原因分析[J]. 上海金属, 2019, 41(3): 34-38. Zhang Mingbo, Liu Xiaoyun, Gao Jianguo, et al. Analysis on weld cracking of C380CL steel wheel[J]. Shanghai Metals, 2019, 41(3): 34-38. [27]惠亚军, 李文远, 潘 辉, 等. 闪光对焊焊接380CL钢轮辋焊缝开裂原因分析[J]. 机械工程材料, 2016, 40(10): 100-103. Hui Yajun, Li Wenyuan, Pan Hui, et al. Weld cracking analysis of 380CL steel rim welded by flash butt welding[J]. Materials for Mechanical Engineering, 2016, 40(10): 100-103. [28]李 敏, 宋振官. 380CL钢制轮辋焊缝开裂分析[J]. 宽厚板, 2013, 19(4): 28-30. Li Min, Song Zhenguan. Analysis on weld cracking of 380CL steel wheel rim[J]. Wide and Heavy Plate, 2013, 19(4): 28-30. [29]吴浩鸿, 李鸿娟, 谭峰亮, 等. 薄规格380 MPa级轮辋钢焊接组织与性能研究[J]. 金属材料与冶金工程, 2019, 47(3): 54-59. Wu Haohong, Li Hongjuan, Tan Fengliang, et al. Microstructure and properties of welded joints of thin-gauge 380 MPa rim steel[J]. Metal Materials and Metallurgy Engineering, 2019, 47(3): 54-59. [30]霍 璐, 刘 颖, 杨 丽. 汽车车轮钢闪光对接焊成形开裂失效分析[J]. 甘肃冶金, 2020, 42(4): 66-68. Huo Lu, Liu Ying, Yang Li. Cracking failure analysis on automotive wheel steel after flash butt welded and formed[J]. Gansu Metallurgy, 2020, 42(4): 66-68. [31]朱永宏, 赵安明, 朱永宽, 等. 490CL车轮用热轧卷板加工微裂纹原因分析及改进[J]. 中国金属通报, 2019(10): 128-129. Zhu Yonghong, Zhao Anming, Zhu Yongkuan, et al. Analysis and improvement of micro-crack causes for hot-rolled coil processing for 490CL wheels[J]. China Metal Bulletin, 2019(10): 128-129. [32]Xu Z, Lu P, Shu Y. Microstructure and fracture mechanism of a flash butt welded 380CL steel[J]. Engineering Failure Analysis, 2016, 62(4): 199-207. [33]王亚东, 王立刚, 孟庆刚. 330CL轮辋闪光对焊接头失效断裂分析[J]. 金属世界, 2020(6): 25-27. Wang Yadong, Wang Ligang, Meng Qinggang. Analysis on failure and fracture of flash butt welded joint for 330CL rim[J]. Metal World, 2020(6): 25-27. [34]张志强, 柳风林, 裴庆涛, 等. 轮辋用钢HZ380CL闪光对焊开裂原因[J]. 河北冶金, 2019(12): 16-19. Zhang Zhiqiang, Liu Fenglin, Pei Qingtao, et al. Cause of crack in flash butt welding of rim steel HZ380CL[J]. Hebei Metallurgy, 2019(12): 16-19. [35]张振杰, 计云萍. 轮辐用热轧车轮钢BT380CL开裂原因分析[J]. 包钢科技, 2019, 45(5): 53-56. Zhang Zhenjie, Ji Yunping. Cause analysis on cracking of hot rolled wheel steel BT380CL used for spoke[J]. Science and Technology of Baotou Steel, 2019, 45(5): 53-56. [36]张洪博, 谭峰亮, 陈志国. 闪光留量对510 MPa级车轮钢闪光对焊接头组织与性能的影响[J]. 材料研究学报, 2017, 31(2): 152-160. Zhang Hongbo, Tan Fengliang, Chen Zhiguo. Effect of flash allowance on microstructure and properties of flash butt welded joint for 510 MPa wheel steel[J]. Chinese Journal of Materials Research, 2017, 31(2): 152-160. [37]苏 晨, 闫君杰. 闪光对焊工艺参数对轮毂用钢RS590CL闪光对焊接头性能的研究[J]. 热加工工艺, 2017, 46(23): 73-76. Su Chen, Yan Junjie. Study on flash butt welding parameters on performance of RS590CL wheel steel flash butt joint[J]. Hot Working Technology, 2017, 46(23): 73-76. [38]徐志欣. 590 MPa级高强钢轮辋接头组织性能与失效分析[D]. 泉州: 华侨大学, 2017. [39]郗晨瑶. RS590CL钢闪光对焊接头微观组织及力学性能的研究[D]. 长春: 吉林大学, 2016. [40]张 梅, 符仁钰, 许洛萍. 汽车用双相钢钢板的发展[J]. 热处理, 2001(1): 5-8. Zhang Mei, Fu Renyu, Xu Luoping. The development of duplex steel sheet used in auto industry[J]. Heat Treatment, 2001(1): 5-8. [41]曹京华. 冷轧双相汽车用钢组织与性能调控研究[D]. 马鞍山: 安徽工业大学, 2020. [42]孙耀祖, 王 旭, 王运玲, 等. 汽车用双相钢的研究进展[J]. 中国材料进展, 2015, 34(6): 475-481. Sun Yaozu, Wang Xu, Wang Yunling, et al. Research progress on DP steel for automobiles[J]. Materials China, 2015, 34(6): 475-481. [43]贾瑞杰, 张 玮, 张 帅. 超快冷系统改造及双相钢冷却工艺优化[J]. 包钢科技, 2017, 43(5): 29-33. Jia Ruijie, Zhang Wei, Zhang Shuai. Modification of ultra-fast cooling system and optimization of dual phase steel cooling process[J]. Science and Technology of Baotou Steel, 2017, 43(5): 29-33. [44]宋建新, 陈松军. DP590冷轧双相钢不同退火温度下的连续冷却相变行为研究[J]. 材料研究与应用, 2022, 16(3): 432-437. Song Jianxin, Chen Songjun. Study on continuous cooling phase transformation behavior of DP590 cold-rolled dual phase steel at different annealing temperatures[J]. Materials Research and Application, 2022, 16(3): 432-437. [45]李 霞, 荆 涛, 佟铁印, 等. 本钢汽车用冷轧双相高强钢DP590的研发[J]. 轧钢, 2017, 34(2): 53-55. Li Xia, Jing Tao, Tong Tieyin, et al. Development of cold rolled steel sheet DP590 for automobile[J]. Steel Rolling, 2017, 34(2): 53-55. [46]GB/T 20564.2—2017, 汽车用高强度冷连轧钢板及钢带 第2部分: 双相钢[S]. [47]董瑞峰, 李德刚, 闫 波, 等. 碳当量对C-Mn型热轧双相钢组织性能的影响[J]. 轧钢, 2011, 28(3): 11-13. Dong Ruifeng, Li Degang, Yan Bo, et al. Effect of carbon equivalent on microstructure and properties of C-Mn hot rolled dual-phase steel[J]. Steel Rolling, 2011, 28(3): 11-13. [48]叶洁云, 赵征志, 张迎晖, 等. 硅和铬对超高强双相钢组织和性能的影响[J]. 钢铁, 2015, 50(3): 78-83. Ye Jieyun, Zhao Zhengzhi, Zhang Yinghui, et al. Effects of Si and Cr on microstructure and mechanical properties of ultra high strength dual-phase steel[J]. Iron and Steel, 2015, 50(3): 78-83. [49]祝志峰, 赵征志, 赵爱民, 等. Si对高强热轧双相钢组织性能的影响[J]. 轧钢, 2011, 28(2): 16-18. Zhu Zhifeng, Zhao Zhengzhi, Zhao Aimin, et al. Effects of Si on microstructure and properties of high strength hot-rolled dual-phase steel[J]. Steel Rolling, 2011, 28(2): 16-18. [50]利成宁, 袁 国, 周晓光, 等. 汽车结构用热轧双相钢的生产现状及发展趋势[J]. 轧钢, 2012, 29(5): 38-42. Li Chengning, Yuan Guo, Zhou Xiaoguang, et al. Production situation and development trend of the hot-rolled dual phase steel for automobile structure[J]. Steel Rolling, 2012, 29(5): 38-42. [51]宋冉臣. 车体结构用590~780 MPa级冷轧双相钢研制与开发[D]. 包头: 内蒙古科技大学, 2021. [52]朱瑞琪. 热轧DP600汽车用钢变形及断裂行为研究[D]. 武汉: 武汉科技大学, 2018. [53]王 建. DP780冷轧热处理组织性能调控及成形性能[D]. 沈阳: 东北大学, 2019. [54]徐星星. DP780冷轧双相钢组织性能研究[D]. 上海: 上海应用技术大学, 2020. [55]Kang D H, Lee H W. Effect of different chromium additions on the microstructure and mechanical properties of multipass weld joint of duplex stainless steel[J]. Metallurgical and Materials Transactions A, 2012, 43(12): 4678-4687. [56]Takashi F, Mitsuru T, Hirofumi M, et al. Effects of composition and processing factors on the mechanical properties of as-hot-rolled dual-phase steels[J]. Transactions of the Iron and Steel Institute of Japan, 1984, 24(2): 113-121. [57]时晓光. 汽车用热轧双相钢板的研制与开发[D]. 鞍山: 辽宁科技大学, 2007. [58]刘洪旭. DP680热轧双相钢的组织与性能研究[D]. 沈阳: 东北大学, 2020. [59]欧阳页先. 薄板坯连铸连轧生产DP590应变硬化行为[J]. 汽车工艺与材料, 2020(5): 48-51. Ouyang Yexian. Strain hardening behavior of thin slab continuous casted and rolled DP590[J]. Automobile Technology and Material, 2020(5): 48-51. [60]赵培林, 杜传治, 赵征志. 轧后冷却对DP590热轧双相钢组织及性能的影响[J]. 山东冶金, 2016, 38(6): 44-47. Zhao Peilin, Du Chuanzhi, Zhao Zhengzhi. Effects of cooling process after rolling on microstructure and mechanical properties of hot-rolled dual-phase steel DP590[J]. Shandong Metallurgy, 2016, 38(6): 44-47. [61]王 芹, 李红霞. 终轧温度对双相钢组织结构和力学性能的影响[J]. 热加工工艺, 2019, 48(21): 126-128. Wang Qin, Li Hongxia. Effect of final rolling temperature on microstructure and mechanical properties of dual phase steel[J]. Hot Working Technology, 2019, 48(21): 126-128. [62]周 振. 终轧温度对车轮用双相钢组织和力学性能的影响[J]. 热加工工艺, 2019, 48(23): 104-106. Zhou Zhen. Effects of finish rolling temperature on microstructure and mechanical properties of dual-phase steel for wheels[J]. Hot Working Technology, 2019, 48(23): 104-106. [63]陈文静, 胡 平, 邢海瑞, 等. 热处理工艺对钼金属板材组织和性能影响的研究进展[J]. 材料导报, 2021, 35(3): 3141-3151. Chen Wenjing, Hu Ping, Xing Hairui, et al. Research progress of the effect of heat treatment process on microstructure and properties of molybdenum sheet[J]. Materials Reports, 2021, 35(3): 3141-3151. [64]Li P, Li J, Meng Q, et al. Effect of heating rate on ferrite recrystallization and austenite formation of cold-roll dual phase steel[J]. Journal of Alloys and Compounds, 2013, 578: 320-327. [65]李慧远, 戴杰涛, 冼玲标, 等, 退火温度对DP590冷轧双相钢相变和组织的影响[J]. 工程技术研究, 2020, 5(6): 1-4. Li Huiyuan, Dai Jietao, Xian Lingbiao, et al. Effect of annealing temperature on phase transformation and microstructure of DP590 cold-rolled dual-phase steel[J]. Engineering and Technological Research, 2020, 5(6): 1-4. [66]李春诚, 王鲲鹏, 李沈洋, 等. 低合金双相钢DP590成分设计和工艺优化[J]. 金属制品, 2017, 43(1): 23-26. Li Chuncheng, Wang Kunpeng, Li Shenyang, et al. Chemical composition design and process optimization of low alloy dual phase steel DP590[J]. Metal Products, 2017, 43(1): 23-26. [67]吴庆美, 缪心雷, 郑连辉, 等. 工业化生产中冷却速率对热镀锌DP600的组织及性能影响[J]. 金属功能材料, 2022, 29(2): 67-70. Wu Qingmei, Miao Xinlei, Zheng Lianhui, et al. Effect of cooling rate on microstructure and properties of DP600 in the industrial production[J]. Metallic Functional Materials, 2022, 29(2): 67-70. [68]胡 洋, 冯 岗. DP590冷轧双相钢连退生产工艺[J]. 金属世界, 2016(6): 64-66. Hu Yang, Feng Gang. Continuous annealing furnace production process of cold-rolled DP590[J]. Metal World, 2016(6): 64-66. [69]范珍珍. 热处理对汽车用DP590双相钢组织和力学性能的影响[J]. 热加工工艺, 2016, 45(12): 210-212. Fan Zhenzhen. Effect of heat treatment on microstructure and mechanical properties of DP590 dual-phase steel for automobile[J]. Hot Working Technology, 2016, 45(12): 210-212. [70]霍 刚, 李振兴, 岑一鸣, 等. DP590冷轧板热处理的组织和性能[J]. 东北大学学报(自然科学版), 2013, 34(7): 944-947. Huo Gang, Li Zhenxing, Cen Yiming, et al. Microstructure and performance of DP590 cold rolled steel strip after heat treatment processes[J]. Journal of Northeasten University(Natural Science), 2013, 34(7): 944-947. [71]潘 华, 吴 岳. DP540双相钢焊接接头组织与拉伸断裂位置研究[J]. 上海金属, 2020, 42(1): 17-22. Pan Hua, Wu Yue. Research on the microstructure and fracture location of DP540 dual-phase steel welded joints during tensile test[J]. Shanghai Metals, 2020, 42(1): 17-22. [72]翟战江, 曹 洋, 赵 琳, 等. 热输入对DP600激光焊组织和力学性能的影响[J]. 钢铁研究学报, 2019, 31(6): 582-591. Zhai Zhanjiang, Cao Yang, Zhao Lin, et al. Effect of heat input on microstructure and mechanical properties of laser welded DP600 steel[J]. Journal of Iron and Steel Research, 2019, 31(6): 582-591. [73]韦春华, 陶 武, 刘 奋, 等. 热输入对DP600双相钢激光焊接接头力学性能的影响[J]. 焊接技术, 2014, 43(9): 12-14. Wei Chunhua, Tao Wu, Liu Fen, et al. Effect of heat input on mechanical properties of laser welded joints of DP600 dual phase steel[J]. Welding Technology, 2014, 43(9): 12-14. |