[1]Feng X, Zhang J Y, Wu K, et al. Ultrastrong Al0.1CoCrFeNi high-entropy alloys at small scales: Effects of stacking faults vs.nanotwins[J]. Nanoscale, 2018, 10(28): 13329-13334. [2]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [3]Wang M M, Li Z M, Raabe D. In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy[J]. Acta Materialia, 2018, 147: 236-246. [4]Feng H, Wang Z, Wu Q, et al. Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy[J]. Scripta Materialia, 2018, 155: 134-138. [5]Miao J, Slone C E, Smith T M, et al. The evolution of the deformation substructure in a Ni-Co-Crequiatomic solid solution alloy[J]. Acta Materialia, 2017, 132: 35-48. [6]Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765. [7]李建国, 黄瑞瑞, 张 倩, 等. 高熵合金的力学性能及变形行为研究进展[J]. 力学学报, 2020, 52(2): 333-359. Li Jianguo, Huang Ruirui, Zhang Qian, et al. Mechanical properties and behaviors of high entropy alloys[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333-359. [8]牛利冲, 李 杰, 赵思杰, 等. FeCoNiCrMn系高熵合金变形机制的研究进展[J]. 中国有色金属学报, 2022(8): 2316-2326. Niu Lichong, Li Jie, Zhao Sijie, et al. Research progress of deformation mechanism of FeMnCoCrNi high entropy alloy system[J]. The Chinese Journal of Nonferrous Metals, 2022(8): 2316-2326. [9]Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534: 227-230. [10]Cao T, Shang J, Jie Z, et al. The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys[J]. Materials Letters, 2016, 164: 344-347. [11]Li Q, Zhang T W, Qiao J W, et al. Mechanical properties and deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys with heterogeneous structure at room and cryogenic temperatures[J]. Journal of Alloys and Compounds, 2020, 816: 152663. [12]Lu K, Chauhan A, Walter M, et al. Superior low-cycle fatigue properties of CoCrNi compared to CoCrFeMnNi[J]. Scripta Materialia, 2021, 194: 113667. [13]Chen K T, Wei T J, Li G C, et al. Mechanical properties and deformation mechanisms in CoCrFeMnNi high entropy alloys: A molecular dynamics study[J]. Materials Chemistry and Physics, 2021(15): 124912. [14]Zaddach A J, Niu C, Koch C C, et al. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy[J]. JOM, 2013, 65(12): 1780-1789. [15]Wu X X, Mayweg D, Ponge D, et al. Microstructure and deformation behavior of two TWIP/TRIP high entropy alloys upon grain refinement[J]. Materials Science and Engineering A, 2021, 802: 140661. [16]Zhou Y J, Zhang Y, Wang F J, et al. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1-x solid-solution alloys[J]. Applied Physics Letters, 2008, 92(24): 121-123. [17]Chen X T, Shao L, Fan T W, et al. Investigation of aluminum concentration on stacking fault energies of hexagonal close-packed high-entropy alloys Hf0.25Ti0.25Zr0.25Sc0.25-xAlx(x<15%)[J]. Journal of Alloys and Compounds, 2021, 887: 161412. [18]Shih M, Miao J, Mills M, et al. Stacking fault energy in concentrated alloys[J]. Nature Communications, 2021, 12(1): 3590. [19]Qiu S, Zhang X C, Zhou J, et al. Influence of lattice distortion on stacking fault energies of CoCrFeNi and Al-CoCrFeNi high entropy alloys[J]. Journal of Alloys and Compounds, 2020, 846: 156321. [20]畅海涛, 霍晓峰, 李万鹏, 等. 高熵合金强化机制的研究进展[J]. 稀有金属材料与工程, 2020, 49(10): 3633-3645. Chang Haitao, Huo Xiaofeng, Li Wanpeng, et al. Research development of strengthening mechanism of high entropy alloy[J]. Rare Metal Materials and Engineering, 2020, 49(10): 3633-3645. [21]吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 54(11): 1553-1566. Lü Zhaoping, Lei Zhifeng, Huang Hailong, et al. Deformation behavior and toughening of high-entropy alloys[J]. Acta Metallurgica Sinica, 2018, 54(11): 1553-1566. [22]Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi[J]. Acta Materialia, 2020, 199: 352-369. [23]Li Z, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys[J]. Scientific Reports, 2017, 7: 40704. [24]Wang Z, Baker I, Cai Z, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys[J]. Acta Materialia, 2016, 120: 228-239. [25]Liu Y, Zheng G P, Li M. The effects of short-range chemical and structural ordering related to oxygen interstitials on mechanical properties of CrCoFeNi high-entropy alloys: A first-principles study[J]. Journal of Alloys and Compounds, 2020, 843: 156060. [26]Xie Z C, Wang Y J, Lu C, et al. Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy[J]. Materials Today Communications, 2021, 26: 101902. [27]Fernández-Caballero A, Wróbel J S, Mummery P M, et al. Short-range order in high entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system[J]. Journal of Phase Equilibria and Diffusion, 2017, 38(4): 391-403. [28]Singh P, Smirnov A V, Johnson D D. Atomic short-range order and incipient long-range order in high-entropy alloys[J]. Physical Review B, 2015, 91: 224204. [29]Bu Y, Wu Y, Lei Z, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys[J]. Materials Today, 2021, 46: 28-34. [30]Chen B, Li S, Zong H, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(28): 16199-16206. [31]Ding J, Yu Q, Mark A, et al. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys[J]. Proceedings of the National Academy of Sciences, 2018, 115(36): 8919-8924. [32]Zhang R, Zhao S, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy[J]. Nature, 2020, 581(5): 283-287. [33]Zhang Y H, Zhuang Y, Hu A, et al. The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys[J]. Scripta Materialia, 2017, 130: 96-99. [34]Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy[J]. Scripta Materialia, 2015, 108: 44-47. [35]He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures[J]. Materials Science and Engineering A, 2019, 759(24): 437-447. [36]Ivanisenko Y, Kurmanaeva L, Weissmueller J, et al. Deformation mechanisms in nanocrystalline palladium at large strains[J]. Acta Materialia, 2009, 57(11): 3391-3401. [37]Zhang H W, Hei Z K, Liu G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J]. Acta Materialia, 2003, 51(7): 1871-1881. [38]Ritchie R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817-822. [39]Lu K, Hansen N. Structural refinement and deformation mechanisms in nanostructured metals[J]. Scripta Materialia, 2009, 60(12): 1033-1038. [40]Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J]. Acta Materialia, 2017, 128: 292-303. [41]Liu S F, Wu Y, Wang H T, et al. Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy[J]. Journal of Alloys and Compounds, 2019, 792: 444-455. [42]Hughes D A, Hansen N, Bammann D J. Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations[J]. Scripta Materialia, 2015, 48(2): 147-153. [43]Kuhlmann-Wilsdorf D. Theory of plastic deformation: Properties of low energy dislocation structures[J]. Materials Science and Engineering A, 1989, 113: 1-41. [44]Gerold V, Karnthaler H P. On the origin of planar slip in f.c.c. alloys[J]. Acta Metallurgica, 1989, 37(8): 2177-2183. [45]An D, Zaefferer S. Formation mechanism of dislocation patterns under low cycle fatigue of a high-manganese austenitic TRIP steel with dominating planar slip mode[J]. International Journal of Plasticity, 2019, 121: 244-260. [46]Han W Z, Zhang Z F, Wu S D, et al. Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals[J]. Philosophical Magazine, 2008, 88(24): 3011-3029. [47]Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Current Opinion in Solid State and Materials Science, 2011, 15(4): 141-168. [48]Laplanche G, Kostka A, Horst O M, et al. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy[J]. Acta Materialia, 2016, 118: 152-163. [49]Cottrell A H, Dexter D L. Dislocations and plastic flow in crystals[M]. Oxford: The Clarendon Press, 1956: 33-52. [50]Hirth J P, Lothe J, Mura T. Theory of dislocations[J]. Journal of Applied Mechanics, 1983, 50(2): 476. [51]He H, Naeem M, Zhang F, et al. Stacking fault driven phase transformation in CrCoNi medium entropy alloy[J]. Nano Letters, 2021, 21(3): 1419-1426. [52]Lv Y T, Lang X W, Su C J, et al. Stacking fault and nano-twins dominating strengthening mechanism of (CuZnMnNi)100-xSnx high entropy brass alloy prepared by mechanical alloying and fast hot pressing sintering[J]. Materials Letters, 2022, 312: 131614. [53]Han W, Wu S, Huang C, et al. Orientationdesign for enhancing deformation twinning in Cu single crystal subjected to equal channel angular pressing[J]. Advanced Engineering Materials, 2010, 10(12): 1110-1113. [54]Cao Y, Wang Y B, An X H, et al. Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion[J]. Acta Materialia, 2014, 63: 16-29. [55]Cao Y, Wang Y B, An X H, et al. Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins[J]. Scripta Materialia, 2015, 100: 98-101. [56]Bnisch M, Wu Y, Sehitoglu H. Hardening by slip-twin and twin-twin interactions in FeMnNiCoCr[J]. Acta Materialia, 2018, 153: 391-403. [57]Xu X D, Liu P, Tang Z, et al. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi[J]. Acta Materialia, 2018, 144: 107-115. [58]Mohammed A, El-Danaf E A, Radwan A A. A criterion for shear banding localization in polycrystalline FCC metals and alloys and critical working conditions for different microstructural variables[J]. Journal of Materials Processing Technology, 2007, 186(1-3): 14-21. [59]Antolovich S D, Armstrong R W. Plastic strain localization in metals: Origins and consequences[J]. Progress in Materials Science, 2014, 59: 1-160. [60]Paul H, Driver J H, Jasienski Z. Shear banding and recrystallization nucleation in a Cu-2%Al alloy single crystal[J]. Acta Materialia, 2002, 50(4): 815-830. [61]An X, Lin Q, Shen Q, et al. Influence of stacking-fault energy on the accommodation of severe shear strain in Cu-Al alloys during equal-channel angular pressing[J]. Journal of Materials Research, 2009, 24(12): 3636-3646. [62]Paul H, Driver J H, Maurice C, et al. Crystallographic aspects of the early stages of recrystallisation in brass-type shear bands[J]. Acta Materialia, 2002, 50(17): 4339-4355. [63]Kaushik L, Kim M S, Singh J, et al. Deformation mechanisms and texture evolution in high entropy alloy during cold rolling[J]. International Journal of Plasticity, 2021, 141: 102989. [64]褚延朋, 贾云柯, 李 杰, 等. 高熵合金相转变规律的研究进展[J]. 金属热处理, 2019, 44(11): 19-24. Chu Yanpeng, Jia Yunke, Li Jie, et al. Research progress of phase transformation law of high entropy alloys[J]. Heat Treatment of Metals, 2019, 44(11): 19-24. [65]Wong S L, Madivala M, Prahl U, et al. A crystal plasticity model for twinning- and transformation-induced plasticity[J]. Acta Materialia, 2016, 118: 140-151. [66]Lee T H, Shin E, Oh C S, et al. Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels[J]. Acta Materialia, 2010, 58(8): 3173-3186. |