[1]GüvenI·, Gürel C. Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys[J]. Metallurgical and Materials Transactions A, 2014, 45: 3074-3087. [2]张德芬, 谭 盖, 陈孝文, 等. 2A12/7075异种铝合金搅拌摩擦焊接头的组织及性能[J]. 金属热处理, 2017, 42(2): 49-53. Zhang Defen, Tan Gai, Chen Xiaowen, et al. Microstructure and properties of friction stir welding joint of dissimilar 2A12 and 7075 aluminum alloy[J]. Heat Treatment of Metals, 2017, 42(2): 49-53. [3]Balaji S, Sujay A, Balachandar K. Conventional and underwater friction stir welded AA2024-T351 aluminium alloy-A comparative analysis[J]. World Journal of Engineering, 2020, 17(6): 795-801. [4]Rouzbehani R, Kokabi A H, Sabet H, et al. Metallurgical and mechanical properties of underwater friction stir welds of Al7075 aluminum alloy[J]. Journal of Materials Processing Technology, 2018, 262: 239-256. [5]廖泽鑫, 李承波, 刘胜胆, 等. 焊后时效对7046铝合金搅拌摩擦焊接头力学性能的影响[J]. 材料研究学报, 2021, 35(7): 543-552. Liao Zexin, Li Chengbo, Liu Shengdan, et al. Effect of post aging on mechanical properties of friction stir welded 7046 aluminum alloy[J]. Chinese Journal of Materials Research, 2021, 35(7): 543-552. [6]Babu K T, Muthukumaran S, Narayanan C S, et al. Analysis and characterization of forming behavior on dissimilar joints of AA5052-O to AA6061-T6 using underwater friction stir welding[J]. Surface Review and Letters, 2020, 27: 1950121. [7]Safarbali B, Shamanian M, Eslami A. Effect of post-weld heat treatment on joint properties of dissimilar friction stir welded 2024-T4 and 7075-T6 aluminum alloys[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(7): 1287-1297. [8]Zhang J, Feng X S, Gao J S, et al. Effects of welding parameters and post-heat treatment on mechanical properties of friction stir welded AA2195-T8 Al-Li alloy[J]. Journal of Materials Science and Technology, 2018, 34(1): 219-227. [9]Zeng X H, Xue P, Wu L H, et al. Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design[J]. Materials Science and Engineering A, 2019, 755: 28-36. [10]Li H, Tang Y, Zeng Z, et al. Effect of ageing time on strength and microstructures of an Al-Cu-Li-Zn-Mg-Mn-Zr alloy[J]. Materials Science and Engineering A, 2008, 498(1-2): 314-320. [11]Deschamps A, Decreus B, Geuser F, et al. The influence of precipitation on plastic deformation of Al-Cu-Li alloys[J]. Acta Materialia, 2013, 61(11): 4010-4021. [12]Blankenship C, Starke E. Structure-property relationships in Al-Li-Cu-Mg-Ag-Zr alloy X2095[J]. Acta Metallurgica et Materialia, 1994, 42(3): 845-855. [13]Sankaran K K, Neal J E, Sastry S M L. Effects of second-phase dispersoids on deformation behavior of Al-Li alloys[J]. Metallurgical and Materials Transactions A, 1983, 14(10): 2174-2178. [14]王志文, 杨荣东, 黄元春, 等. 时效处理对挤压成型2195铝锂合金组织和力学性能的影响[J]. 金属热处理, 2022, 47(9): 6-11. Wang Zhiwen, Yang Rongdong, Huang Yuanchun, et al. Effect of aging treatment on microstructure and mechanical properties of extruded 2195 Al-Li alloy[J]. Heat Treatment of Metals, 2022, 47(9): 6-11. |