[1]张文华. 不锈钢及其热处理[M]. 沈阳: 辽宁科学技术出版社, 2010. [2]金维松. 含氮奥氏体不锈钢耐局部腐蚀性能的研究[D]. 昆明: 昆明理工大学, 2007. [3]崔 昆. 钢铁材料及有色金属材料[M]. 北京: 机械工业出版社, 1981: 215-228. [4]赵昌盛. 模具材料及热处理手册[M]. 北京: 机械工业出版社, 2008: 457. [5]王正国. 高氮奥氏体不锈钢显微组织及力学性能的研究[D]. 太原: 太原理工大学, 2011. [6]胡明娟, 潘健生. 钢铁化学热处理原理[M]. 上海: 上海交通大学出版社, 1996. [7]Wang Jun, Xiong Ji, Peng Qian, et al. Effects of DC plasma nitriding parameters on microstructure and properties of 304L stainless steel[J]. Materials Characterization, 2009, 60(3): 197-203. [8]周孝重, 陈大凯. 等离子体热处理技术[M]. 北京: 机械工业出版社, 1990: 167-169. [9]孙 斐, 胡佳佳, 王树凯, 等. 气压对304 奥氏体不锈钢低温离子渗氮组织与性能影响及机理研究[J]. 材料热处理学报, 2014, 35(S2): 221-225. Sun Fei, Hu Jiajia, Wang Shukai, et al. Effect of gas pressure in low temperature plasma nitriding on the microstructure and properties for 304 austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(S2): 221-225. [10]卢世静, 孙 斐, 缪小吉, 等. 离子渗氮和固溶复合处理制备深层含氮奥氏体不锈钢[J]. 表面技术, 2018, 47(10): 180-185. Lu Shijing, Sun Fei, Miao Xiaoji, et al. Preparation for deep nitriding austenitic stainless steel by complex treatment of plasma nitriding and solid solution[J]. China Surface Engineering, 2018, 47(10): 180-185. [11]冯晓庆, 蒋如意, 陈绪宏, 等. 气压对904L奥氏体不锈钢低温离子渗氮组织与耐蚀性能的影响[J]. 材料热处理学报, 2020, 41(3): 156-162. Feng Xiaoqing, Jiang Ruyi, Chen Xuhong, et al. Effect of air pressure on microstructure and corrosion resistance of low temperature glow plasma nitriding layer of 904L austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2020, 41(3): 156-162. [12]夏立芳, 高彩桥. 钢的渗氮[M]. 北京: 机械工业出版社, 1989. [13]Shen Lie, Wang Liang, Wang Yizuo, et al. Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening[J]. Surface and Coatings Technology, 2010, 204(20): 3222-3227. [14]王 健, 马 驰, 陈尔凡. 等离子体表面改性技术[J]. 辽宁化工, 2012, 41(5): 486-487, 525. Wang Jian, Ma Chi, Chen Erfan. Plasma surface modification technology[J]. Liaoning Chemical Industry, 2012, 41(5): 486-487, 525. [15]方梦莎, 张 津, 连 勇. 马氏体不锈钢不同渗氮方法对比试验[J]. 金属热处理, 2021, 46(10): 221-225. Fang Mengsha, Zhang Jin, Lian Yong. Comparative test on different nitriding methods for martensitic stainless steel[J]. Heat Treatment of Metals, 2021, 46(10): 221-225. [16]王艳芳, 殷挺峰, 李双喜. 脱碳层对38CrMoAl钢离子渗氮的影响[J]. 金属热处理, 2020, 45(10): 194-198. Wang Yanfang, Yin Tingfeng, Li Shangxi. The influence of superficial decarburization layer to plasma nitriding for 38CrMoAl steel[J]. Heat Treatment of Metals, 2020, 45(10): 194-198. [17]张志强, 荆洪阳, 徐连勇, 等. 铁素体/奥氏体双相不锈钢组织和耐局部腐蚀性能研究现状[J]. 材料保护, 2021, 54(1): 136-146. Zhang Zhiqiang, Jing Hongyang, Xu Lianyong, et al. Research status on microstructure and localized corrosion resistance of ferrite/austenitic duplex stainless steels[J]. Materials Protection, 2021, 54(1): 136-146. [18]Nutor R K, Cao Q P, Wang X D, et al. Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-xMox high-entropy alloys via secondary phase control[J]. Journal of Materials Science and Technology, 2021, 73(14): 210-217. [19]Yi Yan, Kang Ping, Zhang Ruihua, et al. Effect of heat treatment on microstructure and properties of VG10 and 3Cr13 dissimilar welded joints[J]. China Welding, 2021, 30(1): 21-29. [20]夏立芳, 高彩桥. 钢的渗氮[M]. 北京: 机械工业出版社, 1989: 173-178. [21]李春明, 朱伟恒, 焦东玲, 等. H13钢表面镀铬和气体渗氮复合处理的组织及性能[J]. 金属热处理, 2020, 45(5): 5-11. Li Chunming, Zhu Weiheng, Jiao Dongling, et al. Microstructure and properties of H13 steel treated by chromium plating and gas nitriding[J]. Heat Treatment of Metals, 2020, 45(5): 5-11. [22]李双喜, 顾 敏, 孙启锋. 富铈稀土加入量对离子渗氮催渗效果的影响[J]. 金属热处理, 2019, 44(3): 93-96. Li Shuangxi, Gu Min, Sun Qifeng. Energized function of Ce-rich rare earth content on ion nitriding[J]. Heat Treatment of Metals, 2019, 44(3): 93-96. |