[1]班佳乐, 史智越, 俞 峰, 等. GCr15轴承钢双淬火对组织性能影响[J]. 钢铁, 2022, 57(9): 114-122. Ban Jiale, Shi Zhiyue, Yu Feng, et al. Effect of double quenching on microstructure and properties of GCr15 bearing steel[J]. Iron and Steel, 2022, 57(9): 114-122. [2]李 雄, 林发驹, 杜思敏, 等. 高性能轴承钢的比较分析[J]. 金属热处理, 2021, 46(6): 14-20. Li Xiong, Lin Faju, Du Simin, et al. Comparative analysis of high performance bearing steels[J]. Heat Treatment of Metals, 2021, 46(6): 14-20. [3]刘耀中, 范崇惠. 高碳铬轴承钢滚动轴承零件热处理技术发展与展望[J]. 金属热处理, 2014, 39(1): 53-57. Liu Yaozhong, Fan Chonghui. Development and prospect of heat treatment technology for rolling bearing parts made of high carbon chromium bearing steel[J]. Heat Treatment of Metals, 2014, 39(1): 53-57. [4]张国宏, 张志成, 吴开明. 高碳铬轴承钢的成分设计和热处理工艺的研究进展[J]. 特殊钢, 2015, 36(3): 9-13. Zhang Guohong, Zhang Zhicheng, Wu Kaiming. Progress of research on composition design and heat treatment process of high carbon chromium bearing steel[J]. Special Steel, 2015, 36(3): 9-13. [5]Caballero F G, Bhadeshia H, Mawella K, et al. Very strong low temperature bainite[J]. Materials Science and Technology, 2002, 18(3): 279-284. [6]Bhadeshia H K D H. Steels for bearings[J]. Progress in Materials Science, 2012, 57(2): 268-435. [7]Zhang F C, Yang Z N. Development of and perspective on high-performance nanostructured bainitic bearing steel[J]. Engineering, 2019, 5(2): 319-328. [8]龙晓燕. 中碳无碳化物贝氏体钢组织和性能研究[D]. 秦皇岛: 燕山大学, 2018. [9]Kozeschnik E, Bhadeshia H K D H. Influence of silicon on cementite precipitation in steels[J]. Materials Science and Technology, 2008, 24(3): 343-347. [10]龙晓燕, 张福成, 康 杰, 等. Mn对无碳化物贝氏体钢组织和性能的影响[J]. 金属热处理, 2017, 42(11): 29-35. Long Xiaoyan, Zhang Fucheng, Kang Jie, et al. Influence of Mn on microstructure and mechanical properties of carbide-free bainitic steel[J]. Heat Treatment of Metals, 2017, 42(11): 29-35. [11]李大明, 王福明, 陈 曦, 等. Si含量对无碳化物贝氏体钢组织与性能的影响[J]. 金属热处理, 2018, 43(10): 5-9. Li Daming, Wang Fuming, Chen Xi, et al. Effect of Si content on microstructure and properties of carbide-free bainitic steel[J]. Heat Treatment of Metals, 2018, 43(10): 5-9. [12]桂 洲, 谭谆礼, 白秉哲. Si对低碳贝氏体钢组织与性能的影响[J]. 金属热处理, 2006, 31(5): 4-6. Gui Zhou, Tan Zhunli, Bai Bingzhe. Effect of silicon on microstructure and properties of low-carbon Si-Mn-Cr-Mo bainite steel[J]. Heat Treatment of Metals, 2006, 31(5): 4-6. [13]郑 花, 胡 锋, 柯 睿, 等. 硅对中碳低温贝氏体钢组织与性能的影响[J]. 金属热处理, 2020, 45(9): 203-209. Zheng Hua, Hu Feng, Ke Rui, et al. Effect of Si on microstructure and mechanical properties of low temperature bainitic steel with medium carbon[J]. Heat Treatment of Metals, 2020, 45(9): 203-209. [14]刘 曼, 徐 光, 田俊羽, 等. 硅含量对低碳贝氏体相变动力学和性能的影响[J]. 钢铁研究学报, 2019, 31(11): 982-987. Liu Man, Xu Guang, Tian Junyu, et al. Effect of Si content on kinetics of bainitic transformation and properties of low carbon bainite steels[J]. Journal of Iron and Steel Research, 2019, 31(11): 982-987. [15]Chen Z H, Gu J F, Han L Z. Bainite transformation characteristics of high-Si hypereutectoid bearing steel[J]. Metallography, Microstructure and Analysis, 2018, 7(1): 3-10. [16]Kim K, Lee J, Lee D. Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels[J]. Metals and Materials International, 2010, 16(6): 871-876. [17]Królicka A, Radwański K, Ambroziak A, et al. Analysis of grain growth and morphology of bainite in medium-carbon spring steel[J]. Materials Science and Engineering A, 2019, 768: 138446. [18]VanBohemen S M C. Exploring the correlation between the austenite yield strength and the bainite lath thickness[J]. Materials Science and Engineering A, 2018, 731(25): 119-123. [19]Lan H F, Du L X, Li Q, et al. Improvement of strength-toughness combination inaustempered low carbon bainitic steel: The key role of refining prior austenite grain size[J]. Journal of Alloys and Compounds, 2017, 710: 702-710. [20]余永宁. 金属学原理[M]. 北京: 冶金工业出版社, 2000. [21]He S H, He B B, Zhu K Y, et al. Revealing the role of dislocations on the stability of retained austenite in a tempered bainite[J]. Scripta Materialia, 2019, 168: 23-27. [22]赵佳莉. 70Si3钢的纳米贝氏体组织和性能研究[D]. 秦皇岛: 燕山大学, 2020. [23]Singh S B, Bhadeshia H K D H. Estimation of bainite plate-thickness in low-alloy steels[J]. Materials Science and Engineering A, 1998, 245(1): 72-79. [24]Cornide J, Garcia-Mateo C, Capdevila C, et al. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels[J]. Journal of Alloys and Compounds, 2013, 577(12): 43-47. [25]Sung H K, Sang Y S, Hwang B, et al. Effects of carbon equivalent and cooling rate on tensile and Charpy impact properties of high-strength bainitic steels[J]. Materials Science and Engineering A, 2011, 530: 530-538. [26]秦羽满, 李艳国, 张 明, 等. 细化渗碳体对高碳纳米贝氏体轴承钢的影响[J]. 中国冶金, 2020, 30(9): 104-109. Qin Yuman, Li Yanguo, Zhang Ming, et al. Effect of refined cementite on nanostructured bainitic bearing steel[J]. China Metallurgy, 2020, 30(9): 104-109. [27]Capdevila C, Caballero F G, García De Andrés C. Analysis of effect of alloying elements on martensite start temperature of steels[J]. Materials Science and Technology, 2013, 19(5): 581-586. [28]Misra A, Sharma S, Sangal S, et al. Critical isothermal temperature and optimum mechanical behavior of high Si-containing bainitic steels[J]. Materials Science and Engineering A, 2012, 558: 725-729. [29]Abareshi M, Emadoddin E. Effect of retained austenite characteristics on fatigue behavior and tensile properties of transformation induced plasticity steel[J]. Materials and Design, 2011, 32(10): 5099-5105. [30]Yoozbashi M N, Yazdani S. Mechanical properties of nanostructured, low temperature bainitic steel designed using a thermodynamic model[J]. Materials Science and Engineering A, 2010, 527(13-14): 3200-3205. |