[1]付锡彬, 陈子豪, 张 可, 等. 淬火温度对高Ti低合金耐磨钢组织及力学性能的影响[J]. 金属热处理, 2022, 47(4): 122-128. Fu Xibin, Chen Zihao, Zhang Ke, et al. Effect of quenching temperature on microstructure and mechanical properties of high Ti low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2022, 47(4): 122-128. [2]董 娜, 徐永新, 杨 晓. 淬火温度对工程机械用低合金耐磨钢组织与力学性能的影响[J]. 热加工工艺, 2020, 49(22): 123-125. Dong Na, Xu Yongxin, Yang Xiao. Effects of quenching temperature on microstructure and mechanical properties of low alloy wear resistant steel for construction machinery[J]. Hot Working Technology, 2020, 49(22): 123-125. [3]练容彪, 宋新莉, 马玉喜, 等. 合金元素对低合金耐磨钢组织及性能的影响[J]. 金属热处理, 2016, 41(12): 47-51. Lian Rongbiao, Song Xinli, Ma Yuxi, et al. Influence of alloy elements on microstructure and mechanical properties of low alloy wear-resistant steel[J]. Heat Treatment of Metals, 2016, 41(12): 47-51. [4]王明娣, 刘东权, 武会宾. 淬火工艺对低合金耐磨钢组织与力学性能的影响[J]. 金属热处理, 2018, 43(8): 156-161. Wang Mingdi, Liu Dongquan, Wu Huibin. The effect of quenching process on the structure and mechanical properties of low alloy wear resistant steel[J]. Heat Treatment of Metals, 2018, 43(8): 156-161. [5]Wang K, Gu K, Misra R D K, et al. On the optimization of microstructure and mechanical properties of CrWMn tool steel by deep cryogenic treatment[J]. Steel Research International, 2019, 90(5): 1800523. [6]Surberg C H, Stratton P, Lingenhöle K. The effect of some heat treatment parameters on the dimensional stability of AISI D2[J]. Cryogenics, 2008, 48(1): 42-47. [7]Wang K, Gu K, Miao J, et al. Toughening optimization on a low carbon steel by a novel quenching-partitioning-cryogenic-tempering treatment[J]. Materials Science and Engineering A, 2019, 743: 259-264. [8]Gill S S, Singh H, Singh R, et al. Cryoprocessing of cutting tool materials-A review[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(1-4): 175-192. |