[1]惠卫军, 董 瀚, 翁宇庆. 高强度螺栓钢的发展动向[J]. 机械工程材料, 2002, 26(11): 1-4, 38. Hui Weijun, Dong Han, Weng Yuqing. Research and development trends of high strength steel for bolts[J]. Materials for Mechanical Engineering, 2002, 26 (11): 1-4, 38. [2]李 昊, 惠卫军, 王娇娇, 等. Cu元素对42CrMoV高强度螺栓钢在模拟大气腐蚀环境下腐蚀行为的影响[J]. 材料保护, 2020, 53(11): 13-21. Li Hao, Hui Weijun, Wang Jiaojiao, et al. Effect of Cu element on the corrosion behavior of 42CrMoV high strength bolt steel in simulated weathering environment[J]. Materials Protection, 2020, 53(11): 13-21. [3]陶晓燕, 沈家华, 史志强. 我国钢桥高强度螺栓连接的发展历程及展望[J]. 铁道建筑, 2017, 57(9): 1-4. Tao Xiaoyan, Shen Jiahua, Shi Zhiqiang. Development history and prospect of high strength bolt connection of steel bridge in China[J]. Railway Engineering, 2017, 57(9): 1-4. [4]张先鸣. 16Cr16Ni2MoNb耐热螺栓钢的热处理工艺研究[J]. 金属加工: 热加工, 2009(5): 32-33. [5]赵 楠, 穆海玲, 周丽萍, 等. 35CrMoA钢连杆螺栓断裂失效分析[J]. 金属热处理, 2008, 33(9): 111-114. Zhao Nan, Mu Hailin, Zhou Liping, et al. Failure analysis of 35CrMoA steel connecting-rod bolt[J]. Heat Treatment of Metals, 2008, 33(9): 111-114. [6]李 昊. Cu和Ni元素对高强度螺栓钢耐候性和延迟断裂的影响[D]. 北京: 北京交通大学, 2018. Li Hao. Effect of Cu and Ni on corrosion resistance and delayed fracture of high strength bolt steel[D]. Beijing: Beijing Jiaotong University, 2018. [7]Omura T. Hydrogen entry and its effect on delayed fracture susceptibility of high strength steel bolts under atmospheric corrosion[J]. ISIJ International, 2012, 52(2): 267-273. [8]Nanninga N, Grochowsi J, Heldt L, et al. Role of microstructure, composition and hardness in resisting hydrogen embrittlement of fastener grade steels[J]. Corrosion Science, 2010, 52: 1237-1246. [9]刘浩然. 热处理工艺对耐候螺栓钢组织和力学性能的影响[D]. 秦皇岛: 燕山大学, 2018. Liu Haoran. Effect of heat treatment on microstructure and mechanical properties of weathering bolt steel[D]. Qinhuangdao: Yanshan University, 2018. [10]雷 鸣. 钒合金化中锰钢组织及力学性能研究[D]. 北京: 北京交通大学, 2019. Lei Ming. Study of microstructure and mechanical properties of V-alloyed medium Mn steel[D]. Beijing: Beijing Jiaotong University, 2019. [11]Hui W J, Zhang Y J, Zhao X L, et al. Very high cycle fatigue properties of Cr-Mo low alloy steel containing V-rich MC type carbides[J]. Materials Science & Engineering A, 2016, 651: 311-320. [12]王占花, 惠卫军, 谢志奇, 等. 回火对钒钛微合金化Mn-Cr系贝氏体型非调质钢组织和性能的影响[J]. 金属学报, 2020, 56(11): 1441-1451. Wang Zhanhua, Hui Weijun, Xie Zhiqi, et al. Effects of tempering temperature on microstructure and mechanical properties of a Mn-Cr type bainitic forging steel[J]. Acta Metallurgica Sinica, 2020, 56(11): 1441-1451. [13]Kihira H, Ito S, Mizoguchi S, et al. Creation of alloy design concept for anti air-born salinity weathering steel[J]. Zairyo-to-Kankyo, 2000, 49(1): 30-40. |