[1]Kolli R P, Seidman D N. The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel[J]. Acta Materialia, 2008, 56(9): 2073-2088. [2]Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels[J]. Acta Materialia, 2013, 61(16): 5996-6005. [3]吴志方, 周 帆. 高能球磨制备Fe-Cu纳米晶过饱和固溶体[J]. 金属热处理, 2015, 40(12): 103-106. Wu Zhifang, Zhou Fan. Fe-Cu nanocrystalline supersaturated solid solution prepared by high energy ball milling[J]. Heat Treatment of Metals, 2015, 40(12): 103-106. [4]陈 军, 张 强. 铸造方法和正火对Fe-Cu合金组织和切削加工性能的影响[J]. 金属热处理, 2015, 40(8): 168-173. Chen Jun, Zhang Qiang. Effects of casting method and normalizing treatment on microstructure and cutting properties of Fe-Cu alloy[J]. Heat Treatment of Metals, 2015, 40(8): 168-173. [5]Zhu J, Zhang T, Yang Y, et al. Phase field study of the copper precipitation in Fe-Cu alloy[J]. Acta Materialia, 2019, 166: 560-571. [6]Yang C F, Su H, Li L, et al. Enrichment of Cu, Ni in surface oxidation layer of copper-bearing age-hardening steel[J]. Iron and Steel, 2007, 42(4): 57-60. [7]Miller M K, Wirth B D, Odette G R. Precipitation in neutron-irradiated Fe-Cu and Fe-Cu-Mn model alloys: A comparison of APT and SANS data[J]. Materials Science and Engineering A, 2003, 353(1-2): 133-139. [8]赵宝军, 赵宇宏, 孙远洋, 等. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600. Zhao Baojun, Zhao Yuhong, Sun Yuanyang, et al. Effect of Mn composition on the nanometer Cu-rich phase of Fe-Cu-Mn alloy by phase field method[J]. Acta Metallurgica Sinica, 2019, 55(5): 593-600. [9]王康红, 位明光, 张中文. Mn含量对Fe-Cu-Mn-Ni合金中富Cu相析出影响的相场法研究[J]. 上海金属, 2023, 45(3): 57-62. Wang Kanghong, Wei Mingguang, Zhang Zhongwen. Study on effect of Mn content on Cu-rich phase precipitates in Fe-Cu-Mn-Ni alloy by phase field method[J]. Shanghai Metals, 2023, 45(3): 57-62. [10]Osamura K, Okuda H, Asano K, et al. SANS study of phase decomposition in Fe-Cu alloy with Ni and Mn addition[J]. ISIJ International, 2007, 34(4): 346-354. [11]Isheim D, Gagliano M S, Fine M E, et al. Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale[J]. Acta Materialia, 2006, 54(3): 841-849. [12]曹 悦, 张 弛, 杨志刚, 等. 镍对Fe-Cu-Ni合金中铜析出行为的影响[J]. 钢铁研究学报, 2012, 24(1): 54-58. Cao Yue, Zhang Chi, Yang Zhigang, et al. Influence of Ni on Cu precipitation in Fe-Cu-Ni alloy[J]. Journal of Iron and Steel Research, 2012, 24(1): 54-58. [13]Wen Y R, Hirata A, Zhang Z W, et al. Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5Cu-1.5Mn-4.0Ni-1.0Al multicomponent ferritic alloy[J]. Acta Materialia, 2013, 61(6): 2133-2147. [14]Qin S, Xiong X, Tong L, et al. Effects of co-addition of Ni and Al on precipitation evolution and mechanical properties of Fe-Cu alloy[J]. Materials Science and Engineering A, 2018, 723(18): 279-286. [15]许大杨, 陈婉琦, 万继方, 等. 时效温度对SLM 18Ni300马氏体时效钢显微组织和力学性能的影响[J]. 金属热处理, 2023, 48(2): 144-150. Xu Dayang, Chen Wanqi, Wan Jifang, et al. Effect of aging temperature on microstructure and mechanical properties of SLM 18Ni300 maraging steel[J]. Heat Treatment of Metals, 2023, 48(2): 144-150. [16]岳 旭, 张明玉, 同晓乐, 等. Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金中α′相和α″相的组织演变与力学性能[J]. 金属热处理, 2023, 48(3): 215-220. Yue Xu, Zhang Mingyu, Tong Xiaole, et al. Microstructure evolution of α′ and α″ phase and mechanical properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy[J]. Heat Treatment of Metals, 2023, 48(3): 215-220. [17]张家豪, 陈连生, 高天洋, 等. 过时效温度对连续退火制备DP1180钢组织性能的影响[J]. 金属热处理, 2023, 48(1): 149-154. Zhang Jiahao, Chen Liansheng, Gao Tianyang, et al. Effect of over-aging temperature on microstructure and properties of DP1180 steel under continuous annealing process[J]. Heat Treatment of Metals, 2023, 48(1): 149-154. [18]Koyama T, Hashimoto K, Onodera H. Phase-field simulation of phase transformation in Fe-Cu-Mn-Ni quaternary alloy[J]. Materials Transactions, 2006, 47(11): 2765-2772. [19]Koyama T, Onodera H. Computer simulation of phase decomposition in Fe-Cu-Mn-Ni quaternary alloy based on the phase-field method[J]. Materials Transactions, 2005, 46(6): 1187-1192. [20]Dinsdale A T. SGTE data for pure elements[J]. Calphad, 1991, 15(4): 317-425. [21]Hornbogen E. A metallographic study of precipitation of copper from alpha iron[J]. Transactions of the Metallurgical Society of AIME, 1960, 218: 1064-1070. [22]王晓姣. Fe-Cu-Ni-Al-Mn 钢中强化相复合析出机制的研究[D]. 上海: 上海大学, 2016. Wang Xiaojiao. Mechanism research of nanaoscale composite precipitates in Fe-Cu-Ni-Al-Mn steel[D]. Shanghai: Shanghai University, 2016. [23]郭 震, 赵宇宏, 孙远洋, 等. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制[J]. 物理学报, 2021, 70(8): 086401. Guo Zhen, Zhao Yuhong, Sun Yuanyang, et al. Phase field study of effect of Al on Cu-rich precipitates in Fe-Cu-Mn-Al alloys[J]. Acta Physica Sinica, 2021, 70(8): 086401. |