[1]朴卉琳. 日本钢铁产业的碳中和战略[J]. 上海节能, 2023(7): 921-935. Piao Huilin. Carbon neutrality strategy of Japan's steel industry[J]. Shanghai Energy Saving, 2023(7): 921-935. [2]胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. Hu Angang. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15. [3]王 灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64. Wang Can, Zhang Yaxin. Implementation pathway and policy system of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2020, 12(6): 58-64. [4]干 勇, 董 瀚. 先进钢铁材料技术的进展[J]. 中国冶金, 2004(8): 3-8. Gan Yong, Dong Han. Recent progress in advanced steel technologies[J]. China Metallurgy, 2004(8): 3-8. [5]Kim J H, Seo E J, Kwon M H, et al. Effect of quenching temperature on stretch flangeability of a medium Mn steel processed by quenching and partitioning[J]. Materials Science and Engineering A, 2018, 729: 276-284. [6]Im Y R, Kim E Y, Song T, et al. Tensile properties and stretch-flangeability of trip steels produced by quenching and partitioning (Q&P) process with different fractions of constituent phases[J]. ISIJ International, 2021, 61: 572-581. [7]Samei J, Salib Y, Amirmaleki M, et al. The role of microstructure on edge cracks in dual phase and quench and partitioning steels subject to severe cold rolling[J]. Scripta Materialia, 2019, 173: 86-90. [8]Huyghe P, Dépinoy S, Caruso M, et al. On the effect of Q&P processing on the stretch-flange-formability of 0.2C ultra-high strength steel sheets[J]. ISIJ International, 2018, 58(7): 1341-1350. [9]Xiong Z, Jacques P J, Perlade A, et al. Ductile and intergranular brittle fracture in a two-step quenching and partitioning steel[J]. Scripta Materialia, 2018, 157: 6-9. [10]De Moor E, Speer J, Matlock D, et al. Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels[J]. ISIJ International, 2011, 51(1): 137-144. [11]Santofimia M J, Zhao L, Petrov R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel[J]. Acta Materialia, 2011, 59(15): 6059-6068. [12]Liu L, He B, Cheng G, et al. Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite[J]. Scripta Materialia, 2018, 150: 1-6. [13]Xiong Z, Jacques P J, Perlade A, et al. Characterization and control of the compromise between tensile properties and fracture toughness in a quenched and partitioned steel[J]. Metallurgical and Materials Transactions A, 2019, 50(8): 3502-3513. [14]Sun W W, Wu Y X, Yang S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scripta Materialia, 2018, 146: 60-63. [15]Ding R, Yao Y, Sun B, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels[J]. Science Advances, 2020, 6(13): eaay1430. [16]Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia, 2003, 51(9): 2611-2622. [17]Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 59-60. [18]Ranjan R, Beladi H, Singh S B, et al. Thermo-mechanical processing of TRIP-aided steels[J]. Metallurgical and Materials Transactions A, 2015, 46(7): 3232-3247. [19]杨德振, 熊志平, 张 超, 等. 回火时间对Fe-0.39C-3.69Mn中锰钢的组织和力学性能的影响[J]. 钢铁研究学报, 2021, 33(11): 1161-1170. Yang Dezhen, Xiong Zhiping, Zhang Chao, et al. Effect of tempering time on microstructures and mechanical properties of an Fe-0.39C-3.69Mn medium Mn steel[J]. Journal of Iron and Steel Research, 2021, 33(11): 1161-1170. [20]Wu Y X, Sun W W, Styles M J, et al. Cementite coarsening during the tempering of Fe-C-Mn martensite[J]. Acta Materialia, 2018, 159: 209-224. [21]Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite[J]. Scripta Materialia, 2010, 63(8): 815-818. [22]Xu Y, Li W, Du H, et al. Tailoring the metastable reversed austenite from metastable Mn-rich carbides[J]. Acta Materialia, 2021, 214: 116986. [23]张 超, 熊志平, 杨德振, 等. 非均质Mn分布对淬火-配分钢微观组织和力学性能的影响[J/OL]. 金属学报: 1-13[2022-06-24]. https://www.ams.org.cn/CN/10.11900/0412.1961.2022.00315. Zhang Chao, Xiong Zhiping, Yang Dezhen, et al. Effect of Mn heterogeneous distribution on microstructures and mechanical properties of quenching and partitioning steels[J/OL]. Acta Metallurgica Sinica: 1-13[2022-06-24]. https://www.ams.org.cn/CN/10.11900/0412.1961.2022.00315. |