[1]张 翥, 王群骄, 莫 畏. 钛的金属学和热处理[M]. 北京: 冶金工业出版社, 2009. [2]汶建宏, 葛 鹏, 杨冠军, 等. 热处理工艺对Ti-1300合金的组织和拉伸性能的影响[J]. 稀有金属材料与工程, 2009, 38(8): 1490-1494. Wen Jianhong, Ge Peng, Yang Guanjun, et al. Effect of heat treatment process on microstructure and tensile properties of Ti-1300 alloy[J]. Rare Metal Materials and Engineering, 2009, 38(8): 1490-1494. [3]邵 晖, 赵永庆, 葛 鹏, 等. 不同组织类型对TC21合金强-塑性的影响[J]. 稀有金属材料与工程, 2013, 42(4): 845-848. Shao Hui, Zhao Yongqing, Ge Peng, et al. Effects of different microstructure types on the strength and plasticity of TC21 alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4): 845-848. [4]Zhu W, Sun Q, Tan C, et al. Tensile brittleness and ductility improvement in a novel metastable β titanium alloy with lamella structure[J]. Journal of Alloys and Compounds, 2020, 827: 154311. [5]安 怡, 寇文娟, 高 婷, 等. 固溶温度对Ti-1300合金时效析出行为与性能的影响[J]. 金属热处理, 2020, 45(9): 29-36. An Yi, Kou Wenjuan, Gao Ting, et al. Effect of solid solution temperature on aging precipitation behavior and properties of Ti-1300 alloy[J]. Heat Treatment of Metals, 2020, 45(9): 29-36. [6]Wan M, Zhao Y, Zeng W, et al. Effects of cold pre-deformation on aging behavior and mechanical properties of Ti-1300 alloy[J]. Journal of Alloys and Compounds, 2015, 619: 383-388. [7]Lu J, Ge P, Li Q, et al. Effect of microstructure characteristic on mechanical properties and corrosion behavior of new high strength Ti-1300 beta titanium alloy[J]. Journal of Alloys and Compounds, 2017, 727: 1126-1135. [8]Lu J W, Zhao Y Q, Ge P, et al. Microstructure and mechanical properties of new high strength beta-titanium alloy Ti-1300[J]. Materials Science and Engineering A, 2015, 621: 182-189. [9]Li X, Wang X N, Liu K, et al. Hierarchical structure and deformation behavior of a novel multicomponent β titanium alloy with ultrahigh strength[J]. Journal of Materials Science and Technology, 2022, 107: 227-242. [10]Qin D, Li Y, Zhang S, et al. On the tensile embrittlement of lamellar Ti-5Al-5V-5Mo-3Cr alloy[J]. Journal of Alloys and Compounds, 2016, 663: 581-593. [11]赵永庆, 葛 鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020, 39(7/8): 527-534, 557-558. Zhao Yongqing, Ge Peng, Xin Shewei. Progresses of R&D on Ti-alloy materials in recent 5 years[J]. Materials China, 2020, 39(7/8): 527-534, 557-558. [12]Wu C, Zhao Y, Huang S, et al. Microstructure tailoring and impact toughness of a newly developed high strength Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe alloy[J]. Materials Characterization, 2021, 175: 111103. [13]Ren L, Xiao W, Chang H, et al. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment[J]. Materials Science and Engineering A, 2018, 711: 553-561. [14]Shekhar S, Sarkar R, Kar S K, et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti-5Al-5V-5Mo-3Cr[J]. Materials and Design, 2015, 66: 596-610. [15]夏晓洁, 吴国清, 黄 正, 等. 固溶时效处理对高强高韧钛合金显微组织与力学性能的影响[J]. 北京航空航天大学学报, 2015, 41(7): 1294-1299. Xia Xiaojie, Wu Guoqing, Huang Zheng, et al. Effects of solution-aging treatment on microstructure and mechanical properties of a high-strength and high-toughness titanium alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1294-1299. [16]Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloys and Compounds, 2008, 457(1/2): 296-309. [17]Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys—An overview[J]. Materials Science and Engineering A, 1998, 243(1-2): 46-65. [18]辛社伟, 周 伟, 李 倩, 等. 1500 MPa级新型超高强中韧钛合金[J]. 中国材料进展, 2021, 40(6): 441-445. Xin Shewei, Zhou Wei, Li Qian, et al. A new type extra-high strength and medium toughness titanium alloy of Ti-1500[J]. Materials China, 2021, 40(6): 441-445. [19]Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength[J]. Scripta Materialia, 2018, 154: 139-144. [20]Yan Z, Wang K, Zhou Y, et al. Crystallographic orientation dependent crack nucleation during the compression of a Widmannstätten-structure α/β titanium alloy[J]. Scripta Materialia, 2018, 156: 110-114. [21]赵敏剑. Ti-55531合金α相长大行为及其对拉伸性能的影响[D]. 西安: 西安理工大学, 2019. [22]Guo P, Zhao Y, Zeng W, et al. The effect of microstructure on the mechanical properties of TC4-DT titanium alloys[J]. Materials Science and Engineering A, 2013, 563: 106-111. [23]Joshi V A. Titanium Alloys: An Atlas of Structures and Fracture Features[M]. Boca Ration, CRC Press, 2006. [24]Zhang B, Chong Y, Zheng R, et al. Enhanced mechanical properties in β-Ti alloy aged from recrystallized ultrafine β grains[J]. Materials and Design, 2020, 195: 109017. |