[1]Yan Z J, Liu K, Eckert J. Effect of tempering and deep cryogenic treatment on microstructure and mechanical properties of Cr-Mo-V-Ni steel[J]. Materials Science and Engineering A, 2020, 787: 139520. [2]Cardoso P H S, Israel C L, da Silva M B, et al. Effects of deep cryogenic treatment on microstructure, impact toughness and wear resistance of an AISI D6 tool steel[J]. Wear, 2020, 456/457: 203382. [3]Weng Z J, Gu K X, Wang K K, et al. The reinforcement role of deep cryogenic treatment on the strength and toughness of alloy structural steel[J]. Materials Science and Engineering A, 2020, 772: 138698. [4]Weng Z J, Gu K X, Wang K K, et al. Effect of deep cryogenic treatment on the fracture toughness and wear resistance of WC-Co cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2019, 85: 105059. [5]师佑杰, 李永刚, 李文辉, 等. 深冷处理对TC4钛合金表面性能的影响[J]. 金属热处理, 2022, 47(2): 183-187. Shi Youjie, Li Yonggang, Li Wenhui, et al. Effect of cryogenic treatment on surface properties of TC4 titanium alloy[J]. Heat Treatment of Metals, 2022, 47(2): 183-187. [6]王兴富, 李永刚, 雷 达, 等. 深冷处理对K6509钴基合金表面性能的影响[J]. 金属热处理, 2020, 45(7): 28-31. Wang Xingfu, Li Yonggang, Lei Da, et al. Effect of cryogenic treatment on surface properties of K6509 Co-based alloy[J]. Heat Treatment of Metals, 2020, 45(7): 28-31. [7]杨 静, 王永坤, 刘高松, 等. 某型智能柴油机凸轮轴热处理工艺的开发[J]. 金属热处理, 2020, 45(10): 85-89. Yang Jing, Wang Yongkun, Liu Gaosong, et al. Development of heat treatment process of camshaft for a type of intelligent diesel engine[J]. Heat Treatment of Metals, 2020, 45(10): 85-89. [8]兰东生, 闫献国, 陈 峙, 等. 磁场深冷处理对YG11C硬质合金耐磨性的影响[J]. 金属热处理, 2021, 46(8): 184-188. Lan Dongsheng, Yan Xianguo, Chen Zhi, et al. Effect of magnetic field cryogenic treatment on wear resistance of YG11C cemented carbide[J]. Heat Treatment of Metals, 2021, 46(8): 184-188. [9]Bansal A, Singla A K, Dwivedi V, et al. Influence of cryogenic treatment on mechanical performance of friction stir Al-Zn-Cu alloy weldments[J]. Journal of Manufacturing Processes, 2020, 56: 43-53. [10]Li C M, Cheng N P, Chen Z Q, et al. Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(1): 68-77. [11]丁宇升, 高坤元, 郭姗姗, 等. 均匀化退火对Al-6Mg-0.4Mn-0.15Zr-0.04Sc合金时效行为和微观结构影响[J]. 稀有金属材料与工程, 2020, 49(5): 1803-1809. Ding Yusheng, Gao Kunyuan, Guo Shanshan, et al. Effect of homogenization treatment on aging behavior and microstructure in Al-6Mg-0.4Mn-0.15Zr-0.04Sc alloy[J]. Rare Metal Materials and Engineering, 2020, 49(5): 1803-1809. [12]张 鹏, 夏伟军, 严红革, 等. 轧制工艺对5A12和5A12+0.2Sr铝合金组织及性能的影响[J]. 金属热处理, 2019, 44 (11): 157-162. Zhang Peng, Xia Weijun, Yan Hongge, et al. Effect of rolling process on microstructure and properties of 5A12 and 5A12+0.2Sr aluminum alloys[J]. Heat Treatment of Metals, 2019, 44(11): 157-162. [13]刘凤财, 荣天爱, 汤雪卫. 不同铸型下Al-6.5Mg-0.14Ti-0.12Zr合金的微观组织与力学性能[J]. 特种铸造及有色合金, 2019, 39 (7): 719-723. Liu Fengcai, Rong Tianai, Tang Xuewei. Microstructure and mechanical properties of Al-6.5Mg-0.14Ti-0.12Zr alloy under different molds[J]. Special Casting and Nonferrous Alloys, 2019, 39(7): 719-723. [14]汤光平, 黄文荣. 循环处理对铝合金尺寸稳定性的影响[J]. 金属热处理, 1999, 24(10): 11-14. Tang Guangping, Huang Wenrong. Effect of cyclic treatment on dimensional stabilization of Al alloys[J]. Heat Treatment of Metals, 1999, 24(10): 11-14. [15]晋芳伟. 深冷处理改善Al-Si合金性能及机理研究[J]. 云南农业大学学报, 2005(5): 729-733. Jin Fangwei. Study on improving performance of Al-Si alloy by deep cryogenic treatment and its mechanism[J]. Journal of Yunnan Agricultural University, 2005(5): 729-733. |