[1]Zhang W H. The development of China’s high-speed railway systems and a study of the dynamics of coupled systems in high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(4): 367-377. [2]Wang D, Wang L, Chen T, et al. HSR mechanisms and effects on the spatial structure of regional tourism in China[J]. Journal of Geographical Sciences, 2016, 26(12): 1725-1753. [3]Zhang G, Ren R. Study on typical failure forms and causes of high-speed railwaywheels[J]. Engineering Failure Analysis, 2019, 105: 1287-1295. [4]Zhang J. Application of remote monitoring and management of high-speed rail transportation based on ZigBee sensor network[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: 40. [5]Wang Z, Xu J, Wang Y, et al. Annual energy simulation for the air conditioning of Fuxing high speed trains[J]. Applied Thermal Engineering, 2021, 188: 116591. [6]林 杰. 滚滑条件对高速车轮钢材料磨损及接触疲劳性能影响研究[D]. 成都: 西南交通大学, 2020. [7]肖 乾, 穆 明, 周新建, 等. 高速列车轮轨材料滑动摩擦实验研究[J]. 华东交通大学学报, 2013, 30(5): 24-29. Xiao Qian, Mu Ming, Zhou Xinjian, et al. Study on sliding friction coefficient of high-speed wheel-rail materials[J]. Journal of East China Jiaotong University, 2013, 30(5): 24-29. [8]程丽杰. 国内外晶粒度标准综述[J]. 理化检验(物理分册), 2019, 55(8): 515-525, 529. Cheng Lijie. Overview of grain size standards at home and abroad[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2019, 55(8): 515-525, 529. [9]高晓龙, 夏天东, 王晓军, 等. 金属晶粒细化方法的研究现状[J]. 金属功能材料, 2009, 16(6): 60-65. Gao Xiaolong, Xia Tiandong, Wang Xiaojun, et al. Present research status for metals refinement methods[J]. Metallic Functional Materials, 2009, 16(6): 60-65. [10]张好强, 庞思勤, 王西彬, 等. 不同晶粒度硬质合金刀具切削不锈钢的试验研究[J]. 稀有金属与硬质合金, 2016, 44(2): 76-80. Zhang Haoqiang, Pang Siqin, Wang Xibin, et al. Experimental study on cutting stainless steel with different grain size cemented carbide tools[J]. Rare Metals and Cemented Carbides, 2016, 44(2): 76-80. [11]韩忠立. 显微组织对690合金管常温微动磨损性能影响[D]. 天津: 天津大学, 2020. [12]蒋 拓, 涂福泉. 机械锤击对TB11钛合金表面性能影响的研究[J]. 热加工工艺, 2022, 51(22): 84-88, 93. Jiang Tuo, Tu Fuquan. Study on effects of mechanical hammering on surface properties of TB11 titanium alloy[J]. Hot Working Technology, 2022, 51(22): 84-88, 93. [13]邱应堃, 安金华, 易梦玲, 等. 晶粒尺寸对CoCrNi中熵合金力学、摩擦磨损及腐蚀性能的影响[J]. 中国有色金属学报, 2023, 33(6): 1890-1901. Qiu Yingkun, An Jinhua, Yi Mengling, et al. Effect of grain size on mechanical property, friction and wear property and corrosion property of CoCrNi medium-entropy alloy[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(6): 1890-1901. [14]Ciavarella M, Monno F. A comparison of multiaxial fatigue criteria as applied to rolling contact fatigue[J]. Tribology International, 2010, 43(11): 2139-2144. [15]林 杰, 曾东方, 鲁连涛, 等. 水润滑条件下转速对车轮钢滚动接触疲劳和磨损性能的影响[J]. 润滑与密封, 2021, 46(1): 59-65, 73. Lin Jie, Zeng Dongfang, Lu Liantao, et al. Effect of rotational speed on rolling contact fatigue and wear properties of wheel steel under water lubrication[J]. Lubrication Engineering, 2021, 46(1): 59-65, 73. [16]李新星, 施剑峰, 王红侠, 等. Ti6Al4V合金干滑动磨损过程中摩擦层及摩擦氧化物的作用[J]. 表面技术, 2019, 48(12): 233-239. Li Xinxing, Shi Jianfeng, Wang Hongxia, et al. Role of tribo-layers and tribo-oxides in dry sliding wear process of Ti6Al4V alloy[J]. Surface Technology, 2019, 48(12): 233-239. |