[1]Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science, 2018, 94: 174-242. [2]董 瀚, 曹文全, 时 捷, 等. 第3代汽车钢的组织与性能调控技术[J]. 钢铁, 2011, 46(6): 1-11. Dong Han, Cao Wenquan, Shi Jie, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels[J]. Iron and Steel, 2011, 46(6): 1-11. [3]Dong H, Jhk B, Jhr C, et al. Effect of austenitization of cold-rolled 10wt% Mn steel on microstructure and discontinuous yielding[J]. Materials Scienceand Engineering A, 2020, 774: 138930. [4]Yang F, Luo H, Hu C, et al. Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel[J]. Materials Scienceand Engineering A, 2017, 685: 115-122. [5]Han J, Lee S J, Lee C Y, et al. The size effect of initial martensite constituents on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Materials Science and Engineering A, 2015, 633: 9-16. [6]Yan S, Li T, Liang T, et al. Adjusting the microstructure evolution, mechanical properties and deformation behaviors of Fe-5.95Mn-1.55Si-1.03Al-0.055C medium Mn steel by cold-rolling reduction ratio[J]. Journal of Materials Research and Technology, 2020, 9(2): 1314-1324. [7]Huo W, Song R, Zhang Z, et al. Effect of Nb contents on microstructure characteristics and yielding behavior of Fe-4Mn-2Al-0.2C steel[J]. Materials Science and Engineering A, 2021, 819: 141457. [8]Nakada N, Mizutani K, Tsuchiyama T, et al. Difference in transformation behavior between ferrite and austenite formations in medium manganese steel[J]. Acta Materialia, 2014, 65: 251-258. [9]胡进朋, 万德成, 李 杰, 等. 临界区退火温度对中锰钢组织性能和变形行为的影响[J]. 材料热处理学报, 2022, 43(2): 104-111. Hu Jinpeng, Wan Decheng, Li Jie, et al. Effect of intercritical annealing temperature on microstructure, properties and deformation behavior of medium manganese steel[J]. Transactions of Materials and Heat Treatment, 2022, 43(2): 104-111. [10]赵 帅, 宋仁伯, 张 宇, 等. 临界退火冷却方式对含铌中锰钢奥氏体稳定性和力学性能的影响[J]. 金属热处理, 2022, 47(11): 20-25. Zhao Shuai, Song Renbo, Zhang Yu, et al. Effect of cooling method of intercritical annealing process on austenite stability and mechanical properties of Nb-containing medium Mn steel[J]. Heat Treatment of Metals, 2022, 47(11): 20-25. [11]Luo H, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel[J]. Acta Materialia, 2011, 59(10): 4002-4014. [12]Yan S, Liu X, Liang T, et al. The effects of the initial microstructure on microstructural evolution, mechanical properties and reversed austenite stability of intercritically annealed Fe-6.1Mn-1.5Si-0.12C steel[J]. Materials Science and Engineering A, 2018, 712: 332-340. [13]Wang Y, Zhang M, Cen Q, et al. A novel process combining thermal deformation and intercritical annealing toenhance mechanical properties and avoid Lüders strain of Fe-0.2C-7Mn TRIP steel[J]. Materials Science and Engineering A, 2022, 839: 142849. [14]Jeong M S, Park T M, Choi S, et al. Recovering the ductility of medium-Mn steel by restoring the original microstructure[J]. Scripta Materialia, 2021, 190: 16-21. [15]Jacques P. Enhancement of the mechanical properties of a low-carbon, low-silicon steel by formation of a multiphased microstructure containing retained austenite[J]. Metallurgical and Materials Transactions A, 1998, 29(9): 2383-2393. [16]Ma J, Lu Q, Sun L, et al. Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel[J]. Metallurgical and Materials Transactions A, 2018, 49(10): 4404. [17]Xu Y B, Hu Z P, Zou Y, etal. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite[J]. Materials Science and Engineering A, 2017, 688: 40-55. |