[1]吴伟辉, 杨永强, 毛 星, 等. 激光选区熔化增材制造金属零件精度优化工艺分析[J]. 铸造技术, 2016, 37(12): 2636-2640. Wu Weihui, Yang Yongqiang, Mao Xing, et al. Precision optimization process for metal part manufactured by selective laser melting[J]. Foundry Technology, 2016, 37(12): 2636-2640. [2]程灵钰, 朱小刚, 刘正武, 等. 热处理对激光选区熔化成形316L不锈钢组织和力学性能的影响[J]. 材料热处理学报, 2020, 41(7): 80-86. Cheng Lingyu, Zhu Xiaogang, Liu Zhengwu, et al. Effect of heat treatment on microstructure and mechanical properties of 316L stainless steel prepared by selective laser melting[J]. Transactions of Materials and Heat Treatment, 2020, 41(7): 80-86. [3]郝志博, 葛昌纯, 黎兴刚, 等. 热处理对选区激光熔化镍基粉末高温合金组织与力学性能的影响[J]. 金属学报, 2020, 56(8): 1133-1143. Hao Zhibo, Ge Changchun, Li Xinggang, et al. Effect of heat treatment on microstructure and mechanical properties of nickel-based powder metallurgy superalloy processed by selective laser melting[J]. Acta Metallurgica Sinica, 2020, 56(8): 1133-1143. [4]Hu Z H, Zhu H H, Zhang H, et al. Experimental investigation on selective laser melting of 17-4PH stainless steel[J]. Optics and Laser Technology, 2017, 87: 17-25. [5]丁 利, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响[J]. 中国激光, 2015(4): 179-185. Ding Li, Li Huaixue, Wang Yudai, et al. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 2015(4): 179-185. [6]Dilip J J S, Ram G D J, Starr T L, et al. Selective laser melting of HY100 steel: Process parameters, microstructure and mechanical properties[J]. Additive Manufacturing, 2017, 13: 49-60. [7]胡志明, 姚文进, 于 良. 激光选区熔化成型15-5PH不锈钢动态力学性能研究[J]. 弹道学报, 2021, 33(4): 77-82. Hu Zhiming, Yao Wenjin, Yu Liang. Study on dynamic mechanical properties of 15-5PH stainless steel formed by selective laser melting[J]. Journal of Ballistics, 2021, 33(4): 77-82. [8]Nong X D, Zhou X L. Effect of scanning strategy on the microstructure, texture, and mechanical properties of 15-5PH stainless steel processed by selective laser melting[J]. Materials Characterization, 2021, 174: 111012. [9]Spierings A B, Start T L, Wegener K. Fatigue performance of additive manufactured metallic parts[J]. Rapid Prototyping Journal, 2013, 19(2): 88-94. [10]Raft H K, Start T L, Stucker B E. A comparison of the tensile, fatigue, and fracture behavior of Ti-6Al-4V and 15-5PH stainless steel parts made by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2013, 69(5): 1299-1309. [11]仇振安, 王海涛, 李继良, 等. 热处理工艺对15-5PH不锈钢组织和力学性能的影响[J]. 金属热处理, 2014, 39(5): 77-81. Qiu Zhen'an, Wang Haitao, Li Jiliang, et al. Effects of heat treatment on microstructure and mechanical properties of 15-5PH stainless steel[J]. Heat Treatment of Metals, 2014, 39(5): 77-81. [12]边培莹. 热处理工艺对316L不锈钢粉末激光选区熔化成形的残余应力及组织的影响[J]. 材料热处理学报, 2019, 40(4): 90-97. Bian Peiying. Effect of heat treatment on residual stress and microstructure of 316L stainless steel powder formed by selective laser melting[J]. Transactions of Materials and Heat Treatment, 2019, 40(4): 90-97. [13]Jägle E A, Choi P P, Van Humbeeck J, et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting[J]. Journal of Materials Research, 2014, 29: 2072-2079. [14]Xu Z J, Zhang Y X. Quench rates in air, water, and liquid nitrogen, and inference of temperature in volcanic eruption columns[J]. Earth and Planetary Science Letters, 2002, 200(3/4): 315-330. [15]赵喜伟, 安俊涛. 淬火温度对超高强海工钢屈强比的影响[J]. 宽厚板, 2021, 27(3): 41-43. Zhao Xiwei, An Juntao. Effects of quenching temperature on yield to tensile strength ratio of ultra high strength offshore engineering steel[J]. Wide and Heavy Plate, 2021, 27(3): 41-43. [16]罗小兵, 杨才福, 苏 航, 等. 时效温度对HSLA高强船体钢组织性能的影响[J]. 材料热处理学报, 2021, 32(6): 73-77. Luo Xiaobing, Yang Caifu, Su Hang, et al. Effect of aging temperature on microstructure and properties of HSLA ship-hull steel[J]. Transactions of Materials and Heat Treatment, 2021, 32(6): 73-77. |