[1]Yumak N, Aslantas K. A review on heat treatment efficiency in metastable beta titanium alloys: the role of treatment process and parameters[J]. Journal of Materials Research and Technology, 2020, 9(6): 15360-15380. [2]Tabie V M, Li C, Wang S F, et al. Mechanical properties of near alpha titanium alloys for high-temperature applications-a review[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(4): 521-540. [3]杨秋月. TB8钛合金热变形行为及组织演变机制的研究[D]. 贵州: 贵州大学, 2021. Yang Qiuyue. Study on hot deformation behavior and microstructure evolution mechanism of TB8 titanium alloy[D]. Guizhou: Guizhou University, 2021. [4]王文婷, 李 沛, 寇文娟, 等. 时效温度对Ti1023和Ti5553合金微观组织与析出硬化的影响规律[J]. 有金属材料与工程, 2020, 49(5): 1707-1714. Wang Wenting, Li Pei, Kou Wenjuan, et al. Effect of aging temperature on microstructures and precipitation hardening in Ti1023 and Ti5553 alloys[J]. Rare Metal Materials and Engineering, 2020, 49(5): 1707-1714. [5]马 权, 郭爱红, 周 廉. Ti1023钛合金在时效过程中的组织演化和拉伸性能[J]. 中国有色金属学报, 2019, 29(6): 1219-1225. Ma Quan, Guo Aihong, Zhou Lian. Microstructure evolution and tensile properties of Ti1023 titanium alloy during aging[J]. Chinese Journal of Nonferrous Metals, 2019, 29(6): 1219-1225. [6]Chen Z, Zhong D L, Sun Q, et al. Effect of alpha phase fraction on the dynamic mechanical behavior of a dual-phase metastable beta titanium alloy Ti-10V-2Fe-3Al[J]. Materials Science and Engineering A, 2021: 816. [7]双翼翔. 结构β钛合金冷变形行为及机制研究[D]. 西安: 西安建筑科技大学, 2019. Shuang Yixiang. Cold Deformation Behavior and Mechanism Research of Structure β Titanium Alloy[J]. Xi'an: Xi'an University of Architecture and Technology, 2019. [8]刘 娣, 张利军, 刘小花. 热处理工艺对TB6钛合金棒材微观组织和力学性能的影响[J]. 热加工工艺, 2022, 51(24): 116-118, 124. Liu Di, Zhang Lijun, Liu Xiaohua. Effects of heat treatment process on microstructure and mechanical properties of TB6 titanium alloy bars[J]. Hot Working Technology, 2022, 51(24): 116-118, 124. [9]张禹森. TB6钛合金航空模锻件低倍粗晶的形成机理研究[D]. 燕山: 燕山大学, 2021. Zhang Yusen. Study on the formation mechanism of coarse grain in TB6 aviation die forging[D]. Yanshang: Yanshang University, 2021. [10]焦 磊, 白新房, 许 飞, 等. 应变速率对Ti1023合金室温拉伸性能的影响[J]. 热加工工艺, 2017, 46(20): 60-63. Jiao Lei, Bai Xinfang, Xu Fei, et al. Influence of strain rate on tensile properties of Ti1023 alloy at room temperature[J]. Hot Working Technology, 2017, 46(20): 60-63. [11]张 昭, 郭保桥, 冉 春, 等. 固溶温度对TB6钛合金动态力学性能和微观组织的影响[J]. 高压物理学报, 2021, 35(6): 107-113. Zhang Zhao, Guo Baoqiao, Ran Chun, et al. Effect of solution temperature on dynamic mechanical properties and microstructure of TB6 titanium alloy[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 107-113. [12]苟曼曼, 白瑞敏, 孟利军. 应变速率对钛合金室温拉伸性能的影响[J]. 湖南有色金属, 2020, 36(1): 52-54, 80. Gou Manman, Bai Ruimin, Meng Lijun. Effect of strain rate on tensile properties of titanium alloy at room temperature[J]. Hunan Nonferrous Metals, 2020, 36(1): 52-54, 80. [13]Shu D Y, Wang L, Chen Q, et al. Understanding the role of β recrystallization on β microtexture evolution in hot processing of a near-β titanium alloy (Ti-10V-2Fe-3Al)[J]. Metals, 2021, 11(9): 1397. [14]沈桂琴, 张 虹, 王世洪, 等. Ti-10V-2Fe-3Al合金的应力诱发马氏体转变[J]. 航空材料学报, 1997(2): 26-31. Shen Guiqin, Zhang Hong, Wang Shihong, et al. Stress induced formation of martensite in Ti-10V-2Fe-3Al alloy[J]. Journal of Aeronautical Materials, 1997(2): 26-31. [15]李 聪. 钛合金应力诱导马氏体相变影响因素及力学性能研究[D]. 长沙: 湖南大学, 2013. Li Cong. Tailoring the mechanical properties of titanium alloys via stress-induced martensitic transformation[D]. Changsha: Hunan University, 2013. [16]张少卿, 黄 衡. 固溶温度和冷速对BT3-1钛合金微观组织的影响[J]. 航空材料, 1982(S2): 16-22, 83. Zhang Shaoqing, Huang Heng. The effect of different solution treatment temperatures and cooling rates on the microstructures of BT3-1 titanium alloy[J]. Aeronautical Materials, 1982(S2): 16-22, 83. [17]Niessen F, Pereloma E. A review of insitu observations of deformation-induced β↔α″ martensite transformations in metastable β Ti alloys[J]. Advanced Engineering Materials, 2022. [18]Huang F Y, Huang C W, Wan M P, et al. Effect of solution temperature on microstructure and mechanical properties of Ti-5Al5Mo5V3Cr1Zr alloy[J]. Advanced Engineering Materials, 2022. [19]Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure[J]. Acta Metallurgica Sinica, 2021, 57(11): 1455-1470. [20]Bailor J, Li T, Prima F, et al. A review of the metastable omega phase in beta titanium alloys: the phase transformation mechanisms and its effect on mechanical properties[J]. International Materials Reviews, 2022. |