[1]侯志强. 热等静压近净成形的模拟研究及实验验证[D]. 武汉: 华中科技大学, 2011. [2]马福康. 等静压技术[M]. 北京: 冶金工业出版社, 1992: 271-282. [3]刘文彬, 梁 超, 陈 伟, 等. 航空航天用粉末钛合金的热等静压工艺研究[J]. 材料研究与应用, 2019, 13(3): 229-235, 246. Liu Wenbin, Liang Chao, Chen Wei, et al. Investigation on hot isostatic pressing technique related to densification of titanium alloy powder for aerospace[J]. Materials Research and Application, 2019, 13(3): 229-235, 246. [4]Chatterjee D, Sutradhar G, Oraon B. Fuzzy rule-based prediction of hardness for sintered HSS components[J]. Journal of Materials Processing Technology, 2008, 200(1-3): 212-220. [5]董加坤, 朱祖昌, 张宏康, 等. 国外粉末冶金工模具钢的种类及特性[J]. 热处理, 2010, 25(2): 1-5. Dong Jiakun, Zhu Zuchang, Zhang Hongkang, et al. Sorts and properties of powder metallurgy tool and die steels in the developed countries[J]. Heat Treatment, 2010, 25(2): 1-5. [6]程圆虎. 高速塑料瓶盖压塑模具设计与加工[D]. 杭州: 浙江大学, 2012. [7]刘文彬, 乔龙阳, 潘新宇, 等. 淬火温度对刀剪用M390粉末冶金不锈钢组织和性能的影响[J]. 金属热处理, 2022, 47(4): 189-195. Liu Wenbin, Qiao Longyang, Pan Xinyu, et al. Effects of quenching temperature on the microstructure and properties of M390 powder metallurgical stainless steel for chopping knives and scissors[J]. Heat Treatment of Metals, 2022, 47(4): 189-195. [8]王 帅, 杨春光, 徐大可, 等. 热处理对3Cr13MoCu马氏体不锈钢抗菌性能的影响[J]. 金属学报, 2014, 50(12): 1453-1460. Wang Shuai, Yang Chunguang, Xu Dake, et al. Effect of heat treatment on antibacterial performance of 3Cr13MoCu martensitic stainless steel[J]. Acta Metallurgica Sinica, 2014, 50(12): 1453-1460. [9]李 勃, 王 帅, 肖 超, 等. 热处理工艺对3Cr13MoCu不锈钢组织及性能的影响[J]. 金属功能材料, 2019, 26(4): 30-35. Li Bo, Wang Shuai, Xiao Chao, et al. Effect of heat treatment process on microstructure and mechanical properties of 3Cr13MoCu stainless steel[J]. Metallic Functional Materials, 2019, 26(4): 30-35. [10]郑家圣, 黄天阳, 田林海, 等. 不锈钢表面含Cu功能梯度复合改性层的制备及抗菌性能[J]. 金属热处理, 2023, 48(2): 263-269. Zheng Jiasheng, Huang Tianyang, Tian Linhai, et al. Preparation and antibacterial property of Cu containing functional gradient coating on stainless steel[J]. Heat Treatment of Metals, 2023, 48(2): 263-269. [11]王旭明, 何文武, 魏海东, 等. 热处理工艺对17-4PH不锈钢组织和力学性能的影响[J]. 金属热处理, 2023, 48(6): 85-88. Wang Xuming, He Wenwu, Wei Haidong, et al. Effect of heat treatment process on microstructure and mechanical properties of 17-4PH stainless steel[J]. Heat Treatment of Metals, 2023, 48(6): 85-88. [12]杨 凯, 朱宏伟, 于利民, 等. 时效时间对PH13-8Mo不锈钢组织和力学性能的影响[J]. 金属热处理, 2023, 48(3): 100-103. Yang Kai, Zhu Hongwei, Yu Limin, et al. Effect of aging time on microstructure and mechanical properties of PH13-8Mo stainless steel[J]. Heat Treatment of Metals, 2023, 48(3): 100-103. [13]刘少尊, 车洪艳, 李 欧, 等. 淬火工艺对粉末冶金马氏体不锈钢组织与性能的影响[J]. 金属热处理, 2022, 47(6): 128-132. Liu Shaozun, Che Hongyan, Li Ou, et al. Effect of quenching process on microstructure and properties of powder metallurgy martensitic stainless steel[J]. Heat Treatment of Metals, 2022, 47(6): 128-132. [14]赵荣达. 铜含量对低碳马氏体抗菌不锈钢组织和性能的影响[D]. 阜新: 辽宁工程技术大学, 2017. [15]Huang Yalan, Zhao Jinlong, Zhang Jiarong, et al. Optimized antibacterial treatment for the Cu-bearing 420 stainless steel[J]. Materials Technology, 2018, 33(11): 699-708. [16]时均增. 含铜奥氏体抗菌不锈钢微观组织与性能研究[D]. 兰州: 兰州理工大学, 2010. [17]董加坤. 一种显示马氏体不锈钢组织的金相侵蚀剂[J]. 理化检验(物理分册), 2006(1): 48-49. Dong Jiakun. A metallographic corrading agent showing martensitic stainless steel structure[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2006(1): 48-49. [18]Geenen K, Röttger A, Feld F, et al. Microstructure, mechanical, and tribological properties of M3: 2 high-speed steel processed by selective laser melting, hot-isostatic pressing, and casting[J]. Additive Manufacturing, 2019, 28: 585-599. [19]翁 廷, 朱 杰, 李 志, 等. 金属注射成形17-4PH不锈钢时效性能的研究[J]. 材料研究与应用, 2017, 11(2): 89-93. Weng Ting, Zhu Jie, Li Zhi, et al. Mechanical properties of MIM 17-4PH in aging processes[J]. Materials Research and Application, 2017, 11(2): 89-93. [20]Zhang H W, Xu Y L, Chen L J, et al. Precipitation behaviors of a new antibacterial maraging stainless steel for medical instruments[J]. Metallurgical and Materials Transactions, 2018, 49: 3753-3761. [21]李恒武, 张体宝, 张体勇. 含Cu奥氏体抗菌不锈钢中ε-Cu相的观察和分析[J]. 金属学报, 2008, 44(1): 39-42. Li Hengwu, Zhang Tibao, Zhang Tiyong. Observation and analysis of ε-Cu phase in the antibacterial austenite stainless steel containing Cu[J]. Acta Metallurgica Sinica, 2008, 44(1): 39-42. [22]Sun Shaoheng, Xue Zhiyong, An Licong, et al. A novel design to enhance the mechanical properties in Cu-bearing antibacterial stainless steel[J]. Materials, 2020, 13(2): 1-12. [23]Yang Ke, Lü Manqi. Antibacterial properties of an austenitic antibacterial stainless steel and its security for human body[J]. Journal Material Science Technology, 2007, 23(3): 333-336. [24]郝欣欣. 含铜5Cr15MoV马氏体不锈钢组织及性能研究[D]. 合肥: 中国科技大学, 2021. [25]Hao Xinxin, Xi Tong, Xu Zhiqiang, et al. Effect of tempering temperature on the microstructure, corrosion resistance, and antibacterial properties of Cu-bearing martensitic stainless steel[J]. Materials and Corrosion, 2021, 72: 1668-1676. [26]张红斌, 吴鹏生, 李丽霜, 等. 17-4PH钢中ε-Cu相的形貌及其与位错的交互作用[J]. 特钢技术, 2002(2): 19-24. Zhang Hongbin, Wu Pengsheng, Li Lishuang, et al. Morphology of ε-Cu phase in 17-4PH steel and its interaction with dislocations[J]. Special Steel Technology, 2002(2): 19-24. |