[1]Maki K, Ito Y, Matsunaga H, et al. Solid-solution copper alloys with high strength and high electrical conductivity[J]. Scripta Materialia, 2013, 68(10): 777-780. [2]Fateh A, Aliofkhazraei M, Rezvanian A R. Review of corrosive environments for copper and its corrosion inhibitors[J]. Arabian Journal of Chemistry, 2020, 13(1): 481-544. [3]Barella S, Gruttadauria A, Mapelli C, et al. Investigation of failure and damages on a continuous casting copper mould[J]. Engineering Failure Analysis, 2014, 36: 432-438. [4]Levin Z S, Wang Xiaoxi, Kaynak M, et al. Strength and ductility of powder consolidated ultrafine-grain tantalum[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 73-84. [5]Buckman R W. New applications fortantalum and tantalum alloys[J]. JOM, 2000, 52(3): 40-41. [6]Robin A, Rosa J L. Corrosion behavior of niobium, tantalum and their alloys in hot hydrochloric and phosphoric acid solutions[J]. International Journal of Refractory Metals and Hard Materials, 2000, 18(1): 13-21. [7]Hu Ke, Hu Shubing, Zeng Siqi, et al. The effect of surface treatment on the corrosion behavior of a pure Ta sheet in an equimolar NaCl-KCl melt at 850 ℃ in air. Part 1: Laser surface melting[J]. Materials and Corrosion, 2019, 70(12): 2205-2219. [8]Hu Ke, Hu Shubing, Zeng Siqi, et al. The effect of surface treatment on the corrosion behavior of pure Ta sheet in an equimolar NaCl-KCl melt at 850 ℃ in air, part 2: Diamond film, TaC film, Ta-Si coating and Ta-Si-Al coating[J]. Corrosion Science, 2019, 154: 11-27. [9]Dang Bo, Tian Tian, Yang Kang, et al. Wear and deformation performance of W/Ta multilayer coatings on pure Cu prepared by double glow plasma alloying technique[J]. Coatings, 2020, 10(10): 926. [10]袁庆龙, 池承忠, 苏永安, 等. 纯铜双层辉光离子渗钛组织形成机理及性能分析[J]. 电子显微学报, 2004, 23(2): 163-167. Yuan Qinglong, Chi Chengzhong, Su Yongan, et al. Investigation on the formation and properties of titanizing layer made by double glow discharge process on the surface of pure Cu[J]. Journal of Chinese Electron Microscopy Society, 2004, 23(2): 163-167. [11]Akbarpour M R, Mirabad H M, Hemmati A, et al. Processing and microstructure of Ti-Cu binary alloys: A comprehensive review[J]. Progress in Materials Science, 2022, 127: 100933. [12]徐 重. 我国在金属材料表面工程领域的一项重大原创性技术—双辉光等离子表面冶金技术[J]. 热处理, 2020, 35(6): 1-14. Xu Zhong. A major original innovation technology in field of metal material surface engineering in China double glow plasma surface metallurgy technology[J]. Heat Treatment, 2020, 35(6): 1-14. [13]Wang Qiong, Zhang Pingze, Wei Dongbo, et al. Microstructure and sliding wear behavior of pure titanium surface modified by double-glow plasma surface alloying with Nb[J]. Materials and Design, 2013, 52: 265-273. [14]Song Jian, Zhang Pingze, Wei Dongbo, et al. Isothermal oxidation behavior and microstructure of plasma surface Ta coating on γ-TiAl[J]. Materials Characterization, 2014, 98: 54-59. [15]Lee S L, Doxbeck M, Mueller J, et al. Texture, structure and phase transformation in sputter beta tantalum coating[J]. Surface and Coatings Technology, 2004, 177-178: 44-51. [16]Myers S, Lin Jianlang, Souza R M, et al. The β to α phase transition of tantalum coatings deposited by modulated pulsed power magnetron sputtering[J]. Surface and Coatings Technology, 2013, 214: 38-45. |