[1]周 宣, 李宇力, 马腾飞, 等. FGH97合金连续冷却过程中γ′相的析出行为[J]. 稀有金属材料与工程, 2020, 46(6): 2147-2153. Zhou Xuan, Li Yuli, Ma Tengfei, et al. Precipitation behavior of γ′ in superalloy FGH97 during continuous cooling from supersolvus temperature[J]. Rare Metal Materials and Engineering, 2020, 46(6): 2147-2153. [2]程俊义, 朱立华, 马向东, 等. 一种新型粉末镍基高温合金的过固溶热处理研究[J]. 稀有金属材料与工程, 2022, 51(10): 3722-3731. Cheng Junyi, Zhu Lihua, Ma Xiangdong, et al. Super-solvus heat treatment study of novel Nickel-based superalloy[J]. Rare Metal Materials and Engineering, 2022, 51(10): 3722-3731. [3]张 海, 邹志欢, 龙安平, 等. 热处理冷速对FGH97盘件显微组织和蠕变性能的影响[J]. 稀有金属材料与工程, 2020, 49(7): 2488-2493. Zhang Hai, Zou Zhihuan, Long Anping, et al. Effect of solution cooling rate on microstructure and creep properties of FGH97 nickel-base superalloy of large turbine disk[J]. Rare Metal Materials and Engineering, 2020, 49(7): 2488-2493. [4]郭小童, 郑为为, 李龙飞, 等. 冷却速度导致的薄壁效应对K465合金显微组织和持久性能的影响[J]. 金属学报, 2020, 56(12): 1654-1666. Guo Xiaotong, Zheng Weiwei, Li Longfei, et al. Cooling rate driven thin-wall effects on the microstructures and stress rupture properties of K465 superalloy[J]. Acta Metallurgica Sinica, 2020, 56(12): 1654-1666. [5]胡聘聘, 盖其东, 李相辉, 等. 热处理冷却速度对IN792合金显微组织及持久性能的影响[J]. 金属热处理, 2017, 42(2): 124-130. Hu Pinpin, Gai Qidong, Li Xianghui, et al. Effect of cooling rate in heat treatment on microstructure and stress-rupture properties of IN792 alloy[J]. Heat Treatment of Metals, 2017, 42(2): 124-130. [6]周同金, 马秀萍, 田 水, 等. 固溶冷却速率对IN738LC合金组织及性能的影响[J]. 金属热处理, 2015, 40(11): 153-156. Zhou Tongjin, Ma Xiuping, Tian Shui, et al. Effect of solution cooling rate on microstructure and mechanical properties of IN738LC superalloy[J]. Heat Treatment of Metals, 2015, 40(11): 153-156. [7]白云瑞, 付 锐, 李祚军, 等. GH4096合金固溶冷却方式对性能和参与应力的影响[J]. 航空材料学报, 2022, 42: 74-80. Bai Yunrui, Fu Rui, Li Zuojun, et al. Effect of solution cooling methods on properties and residual stress of GH4096 alloy[J]. Journal of Aeronautical Materials, 2022, 42: 74-80. [8]吴 凯, 刘国权, 胡本芙, 等. 固溶冷却速度和后处理对新型FGH98Ⅰ镍基粉末高温合金γ′相析出和显微硬度的影响[J]. 稀有金属材料与工程, 2012, 41(7): 1267-1272. Wu Kai, Liu Guoquan, Hu Benfu, et al. Effect of solution cooling rate and post treatment on γ′ precipitation and microhardness of a novel nickel-based P/M superalloy FGH98Ⅰ[J]. Rare Metal Materials and Engineering, 2012, 41(7): 1267-1272. [9]吴 凯, 刘国权, 胡本芙, 等. 固溶冷却速度和前处理对新型镍基粉末高温合金组织和显微硬度的影响[J]. 稀有金属材料与工程, 2012, 41(4): 687-691. Wu Kai, Liu Guoquan, Hu Benfu, et al. Effect of solution cooling rate and pre-treatment on the microstructure and microhardness of a novel nickel-based P/M superalloy[J]. Rare Metal Materials and Engineering, 2012, 41(4): 687-691. [10]胥国华, 焦兰英, 张北江, 等. 固溶冷却速度对GH4586合金组织及850 ℃拉伸性能的影响[J]. 材料热处理学报, 2006, 27(2): 47-53. Xu Guohua, Jiao Lanying, Zhang Beijiang, et al. Effect of cooling rate after solid solution on microstructure and tensile properties of GH4586 superalloy at 850 ℃[J]. Transactions of Materials and Heat Treatment, 2006, 27(2): 47-53. [11]Ding Hanhui, He Guoai, Wang Xin, et al. Effect of cooling rate on microstructure and tensile properties of power metallurgy Ni-based superalloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28: 451-460. [12]丁雨田, 张宝兵, 高钰璧, 等. 基于γ′相尺寸的新型Ni-Cr-Co基合金的高温变形行为[J]. 稀有金属材料与工程, 2022, 51(7): 2490-2498. Ding Yutian, Zhang Baobing, Gao Yubi, et al. High temperature deformation behavior of new Ni-Cr-Co based alloy based on γ′ phase size[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2490-2498. [13]张 明, 刘国权, 王 浩, 等. 高性能镍基粉末高温合金固溶处理连续冷却多阶段析出行为和尺寸粗化动力学研究[J]. 稀有金属材料与工程, 2019, 48(10): 3258-3264. Zhang Ming, Liu Guoquan, Wang Hao, et al. Precipitation kinetics and coarsening behavior of multimodal γ′ microstructure in high performance Ni-base PM superalloy[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3258-3264. [14]Radis R, Schaffer M, Albu M, et al. Multimodal size distributions of γ′ precipitates during continuous cooling of UDIMET 720Li[J]. Acta Materialia, 2009, 57(19): 5739-5747. [15]Singh A R P, Nag S, Hwang J Y, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy[J]. Materials Characterization, 2011, 62(9): 878-886. [16]Singh A R P, Nag S, Chattopadhyay S, et al. Mechanisms related to different generations of γ′ precipitation during continuous cooling of a nickel base superalloy[J]. Acta Materialia, 2013, 61(1): 280-293. [17]于彗臣, 谢世殊, 吕俊英, 等. GH141合金的显微组织控制[J]. 材料工程, 2003, 31(5): 7-10. Yu Huichen, Xie Shishu, Lü Junying, et al. Microstructures control in Ni-base superalloy[J]. Journal of Materials Engineering, 2003, 31(5): 7-10. |