[1]李华英, 刘国祥, 宋耀辉, 等. 含4.35%铜抗菌不锈钢的热变形行为[J]. 钢铁, 2022, 57(9): 123-129. Li Huaying, Liu Guoxiang, Song Yaohui, et al. Hot deformation behavior of antibacterial stainless steel containing 4.35% copper[J]. Iron and Steel, 2022, 57(9): 123-129. [2]Qian J, Wang H, Li J, et al. High temperature tensile fracture behavior of copper-containing austenitic antibacterial stainless steel[J]. Materials, 2022, 15(4): 1297. [3]Zhang Z, Zhang X R, Jin T, et al. Antibacterial mechanism of Cu-bearing 430 ferritic stainless steel[J]. Rare Metals, 2022, 41(2): 559-569. [4]杨 柯, 任 玲, 于亚川. 医用含铜抗菌金属——从研究走上应用[J]. 集成技术, 2021, 10(3): 69-77. Yang Ke, Ren Ling, Yu Yachuan. Cu-bearing antibacterial medical metals——From research to application[J]. Journal of Integration Technology, 2021, 10(3): 69-77. [5]Doh H, Nitin N. Gelatin-based rechargeable antibacterial hydrogel paint coating for reducing cross-contamination and biofilm formation on stainless steel[J]. Food Control, 2022, 141: 109113. [6]莫金强, 冯光宏, 张 威, 等. Ag对抗菌不锈钢组织性能的影响及其析出行为[J]. 中国冶金, 2022, 32(8): 62-67. Mo Jinqiang, Feng Guanghong, Zhang Wei, et al. Effects of Ag on microstructure and properties and its precipitation behavior in antibacterial stainless steel[J]. China Metallurgy, 2022, 32(8): 62-67. [7]张 丹, 任 玲, 杨 柯, 等. 316L-Cu抗菌不锈钢种植体中Cu离子的抗菌活性[J]. 中国组织工程研究, 2015, 19(25): 4027-4032. Zhang Dan, Ren Ling, Yang Ke, et al. Antibacterial activity of Cu ions released from 316L-Cu antibacterial stainless steel[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(25): 4027-4032. [8]冯靖雯, 杨 泽, 杨 柯, 等. 317L-Cu抗菌不锈钢对小鼠成纤维细胞生物学行为的影响[J]. 中国医科大学学报, 2022, 51(1): 59-64. Feng Jingwen, Yang Ze, Yang Ke, et al. Influence of 317L-Cu antibacterial stainless steel on biological behavior of fibroblasts in mice[J]. Journal of China Medical University, 2022, 51(1): 59-64. [9]陈四红, 吕曼祺, 张敬党, 等. 含Cu抗菌不锈钢的微观组织及其抗菌性能[J]. 金属学报, 2004, 40(3): 314-318. Chen Sihong, Lü Manqi, Zhang Jindang, et al. Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel[J]. Acta Metallrugica Sinica, 2004, 40(3): 314-318. [10]Chi C, Yu H, Dong J, et al. The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe-Cr-Ni type austenitic heat resistant steel for USC power plant application[J]. Progress in Natural Science: Materials International, 2012, 22(3): 175-185. [11]尹鸿祥, 赵爱民, 赵征志, 等. 退火时间对超纯铁素体含铜不锈钢组织与性能的影响[J]. 金属热处理, 2015, 40(9): 109-113. Yin Hongxiang, Zhao Aimin, Zhao Zhengzhi, et al. Effects of annealing time on microstructure and properties of ultra purified ferritic stainless steel containing copper[J]. Heat Treatment of Metals, 2015, 40(9): 109-113. [12]向红亮, 饶少辉, 郑开魁, 等. Cu含量对UNS S33207特超级双相不锈钢组织, 抗菌性和耐蚀性的影响[J]. 中南大学学报(自然科学版), 2022, 53(8): 2886-2897. Xiang Hongliang, Rao Shaohui, Zheng Kaikui, et al. Effect of Cu content on microstructure, antibacterial and corrosion resistance of UNS S33207 hyper-duplex stainless steel[J]. Journal of Central South University: Science and Technology, 2022, 53(8): 2886-2897. [13]Song H, Yoo J, Kim S H, et al. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels[J]. Acta Materialia, 2017, 135: 215-225. [14]Pang Q, Guo J, Li W, et al. Complex precipitation mechanism of Ti-Nb-V microalloyed bainitic base high strength steel[J]. Journal of Wuhan University of Technology-Materials Science, 2019, 34(6): 1444-1450. [15]尹鸿祥, 吴 毅, 张关震, 等. 铁素体不锈钢中铜析出相的长大和晶体结构演化规律研究[J]. 稀有金属材料与工程, 2021, 50(2): 658-663. Yin Hongxiang, Wu Yi, Zhang Guanzhen, et al. Growth and crystal structure evolution of copper precipitate in ferritic stainless steel[J]. Rare Metal Materials and Engineering, 2021, 50(2): 658-663. [16]Mo J Q, Feng G h, Xu M, et al. Effect of annealing temperature on the evolution of copper-rich phases in antimicrobial stainless steels[J]. Materials Research Express, 2023, 10: 026519. [17]张忠文, 李新梅, 邹 勇, 等. 650 ℃时效不同时间后Super304H钢的显微组织[J]. 机械工程材料, 2011, 35(11): 5-8. Zhang Zhongwen, Li Xinmei, Zou Yong, et al. Microstructure of Super304H steel after aging at 650 ℃ for different times[J]. Materials for Mechanical Engineering, 2011, 35(11): 5-8. [18]Nizinkovskyi R, Halle T, Krueger M. Influence of elasticity on the morphology of fcc-Cu precipitates in Fe-Cu alloys. A phase-field study[J]. Journal of Nuclear Materials, 2022, 566: 153764. [19]杨上金, 吴 波, 刘灯宪, 等. 热处理对Al0.5CoCrCuFeNi高熵合金显微组织与硬度的影响[J]. 金属热处理, 2015, 40(11): 126-131. Yang Shangjin, Wu Bo, Liu Dengxian, et al. Effect of heat treatment on microstructure and hardness of multicomponent high entropy alloy Al0.5CoCrCuFeNi[J]. Heat Treatment of Metals, 2015, 40(11): 126-131. [20]范江玮, 卞 清, 闫文胜, 等. 机械合金化Fe70Cu30体系的结构研究[J]. 中国科学技术大学学报, 2001, 31(3): 374-378. Fan Jiangwei, Bian Qing, Yan Wensheng, et al. Local structures of mechanical alloying Fe70Cu30 system studied by XAFS[J]. Journal of University of Science and Technology of China, 2001, 31(3): 374-378. [21]王宇飞. Cu-Fe合金时效析出行为的第一性原理研究[D]. 上海: 上海交通大学, 2018. Wang Yufei. First-principles study on the aging precipitation behavior of Cu-Fe alloys[D]. Shanghai: Shanghai Jiao Tong University, 2018. [22]Ren G, Hu D, Cheng E, et al. Characterization of copper oxide nanoparticles for antimicrobial applications[J]. International Journal of Antimicrobial Agents, 2009, 33(6): 587-590. [23]Ibrahim S A, Yang H, Seo C W. Antimicrobial activity of lactic acid and copper on growth of Salmonella and Escherichia coli O157: H7 in laboratory medium and carrot juice[J]. Food Chemistry, 2008, 109(1): 137-143. [24]张新蕊. 含铜不锈钢的抗菌特性及抗菌机理研究[D]. 合肥: 中国科学技术大学, 2021. Zhang Xinrui. Study on antibacterial properties and antibacterial mechanism of Cu-bearing stainless steel[D]. Hefei: University of Science and Technology of China, 2021. |