[1]Zhang Y, Jin S, Trimby P W, et al. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion[J]. Acta Materialia, 2019, 162: 19-32. [2]Zou Y, Wu X, Tang S, et al. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios[J]. Journal of Materials Science and Technology, 2021, 85: 106-117. [3]李贝贝, 王元清, 支新航, 等. 我国7×××系高强铝合金及其研究进展[J]. 建筑钢结构进展, 2021, 23(7): 1-10. Li Beibei, Wang Yuanqing, Zhi Xinhang, et al. A review on the research of the 7××× series high strength aluminum alloys as structural material in China[J]. Progress in Steel Building Structures, 2021, 23(7): 1-10. [4]Mei L, Chen X P, Wang C, et al. Good combination of strength and corrosion resistance in an Al-Cu-Mg alloy processed by a short-cycled thermomechanical treatment[J]. Materials Characterization, 2021, 181: 111469. [5]Zhou B, Liu B, Zhang S, et al. Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties[J]. Journal of Alloys and Compounds, 2021, 879: 160407. [6]Yang W, Ji S, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate[J]. Materials and Design, 2015, 85: 752-761. [7]Cassell A M, Robson J D, Zhou X, et al. The direct observation of copper segregation at the broad faces of η′ and η precipitates in AA7010 aluminium alloy[J]. Materials Characterization, 2020, 163(6): 110232. [8]Li Y, Zhang Y, Han S, et al. Research on the effect of aging time on the microstructure of 7055 aluminum alloy[J]. Vacuum, 2020, 171: 108944. [9]Ren J, Wang R, Peng C, et al. Multistage aging treatment influenced precipitate characteristics improve mechanical and corrosion properties in powder hot-extruded 7055 Al alloy[J]. Materials Characterization, 2020, 170: 110683. [10]李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制[J]. 材料导报, 2005, 19(2): 81-83. Li Jinfeng, Zheng Ziqiao, Ren Wenda. Function mechanism of secondary phase on localized corrosion of Al alloy[J]. Materials Review, 2005, 19(2): 81-83. [11]Li H, Zhao P, Wang Z, et al. The intergranular corrosion susceptibility of a heavily overaged Al-Mg-Si-Cu alloy[J]. Corrosion Science, 2016, 107: 113-122. [12]Şimşek I. Investigation of the effect of second phase precipitates on the corrosion and electrical conductivity of 7075 aluminum alloys[J]. Anti-Corrosion Methods and Materials, 2019, 66(5): 683-688. [13]Liao X, Kong X, Dong P, et al. Effect of pre-aging, over-aging and re-aging on exfoliation corrosion and electrochemical corrosion behavior of Al-Zn-Mg-Cu alloys[J]. Journal of Materials Science and Chemical Engineering, 2020, 8(2): 81-88. [14]Wang W, Pan Q, Wang X, et al. Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2020, 845: 156286. [15]黄磊萍, 杨修波, 陈江华, 等. 不同热处理工艺对Al-3.8Zn-1.6Mg铝合金微结构与腐蚀行为作用的探讨[J]. 电子显微学报, 2017, 36(3): 222-228. Huang Leiping, Yang Xiubo, Chen Jianghua, et al. Influence of different aging process on microstructure and corrosion behavior of Al-3.8Zn-1.6Mg aluminum alloy[J]. Journal of Chinese Electron Microscopy Society, 2017, 36(3): 222-228. [16]Goswami R, Lynch S, Holroyd N J H, et al. Evolution of grain boundary precipitates in Al 7075 upon aging and correlation with stress corrosion cracking behavior[J]. Metallurgical and Materials Transactions A, 2012, 44(3): 1268-1278. [17]Palanisamy P, Howe J M. In situ observation of Cu segregation and phase nucleation at a solid-liquid interface in an Al alloy[J]. Acta Materialia, 2013, 61(12): 4339-4346. [18]Wang S S, Huang I W, Yang L, et al. Effect of Cu content and aging conditions on pitting corrosion damage of 7××× series aluminum alloys[J]. Journal of The Electrochemical Society, 2015, 162(4): 150-160. [19]Yang X B, Chen J H, Zhang G H, et al. A transmission electron microscopy study of microscopic causes for localized-corrosion morphology variations in the AA7055 Al alloy[J]. Journal of Materials Science & Technology, 2018, 34(10): 1719-1729. [20]Li J F, Peng Z W, Li C X, et al. Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 755-762. [21]Minh Ngo T, Thi Van Nguyen T, Thi To Phung H, et al. Nanostructured phases, mechanical properties, exfoliation and intergranular corrosion behaviours of 7075 Al-Zn-Mg-Cu alloy-Effect of one-stage and two-stage aging processes[J]. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11(4): 045002. [22]Zhang Z, Deng Y, Ye L, et al. Influence of aging treatments on the strength and localized corrosion resistance of aged Al-Zn-Mg-Cu alloy[J]. Journal of Alloys and Compounds, 2020, 846: 156223. [23]Yan L M, Dai Y X, Wang W B, et al. Effect of pretreatment after solid solution treatment on the mechanical and corrosion properties of 7055 alloy plate[J]. Journal of Materials Engineering and Performance, 2023, 32(9): 4014-4021. [24]Liu L L, Pan Q L, Wang X D, et al. The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy[J]. Journal of Alloys and Compounds, 2018, 735: 261-276. [25]Kosari A, Zandbergen H, Tichelaar F, et al. In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagation[J]. Corrosion Science, 2020, 177: 108912. [26]Jiang H, Xing H, Xu Z, et al. Effect of pre-aging and precipitation behavior on mechanical properties of 7055 aluminum alloy processed by hot-forming quenching[J]. Materials Characterization, 2023, 198: 112729. [27]Chen M, Zheng X, He K, et al. Local corrosion mechanism of an Al-Zn-Mg-Cu alloy in oxygenated chloride solution: Cathode activity of quenching-induced η precipitates[J]. Corrosion Science, 2021, 191: 109743. [28]刘吉梓. Al-Zn-Mg-(Cu) 合金时效中纳米析出相结构及演变规律研究[D]. 长沙: 湖南大学, 2014. [29]Khalfallah A, Raho A A, Amzert S, et al. Precipitation kinetics of GP zones, metastable η′ phase and equilibrium η phase in Al-5.46 wt.%Zn-1.67 wt.%Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 233-241. [30]Zhang P, Li Y, Liu Y, et al. Analysis of the microhardness, mechanical properties and electrical conductivity of 7055 aluminum alloy[J]. Vacuum, 2020, 171: 109005. [31]Liu J, Hu R, Zheng J, et al. Formation of solute nanostructures in an Al-Zn-Mg alloy during long-term natural aging[J]. Journal of Alloys and Compounds, 2020, 821: 153572. [32]Lee S H, Jung J G, Baik S I, et al. Precipitation strengthening in naturally aged Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2021, 803: 140719. |