[1]Yu R, Li X, Yue Z, et al. Stress state sensitivity for plastic flow and ductile fracture of L907A low-alloy marine steel: From tension to shear[J]. Materials Science and Engineering A, 2022, 835: 142689. [2]Ledermuller C, Pratiwi H I, Webster R F, et al. Microalloying effects of Mo versus Cr in HSLA steel with ultrafine-grained ferrite microstructures[J]. Materials and Design, 2020, 185: 108278. [3]王 猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956. Wang Meng, Liu Zhenyu, Li Chenggang. Effects of ultra-fast cooling after hot rolling and lamellarizing on microstructure and cryogenic toughness of 5%Ni steel[J]. Acta Metallurgica Sinica, 2017, 53(8): 947-956. [4]Sun Hongwei, Zhu Jialei, Zhang Benshun, et al. Optimization of laser-MAG hybrid welding parameters of ship steel based on response surface methodology[J]. Materials, 2022, 15(12): 4328. [5]周 成, 刘文鹏, 叶其斌, 等. 亚稳奥氏体对高强度海洋工程用钢力学性能的影响[J]. 东北大学学报(自然科学版), 2021, 42(10): 1400-1406. Zhou Cheng, Liu Wenpeng, Ye Qibin, et al. Effect of metastable austenite on mechanical properties of high-strength steel in oceaneering[J]. Journal of Northeastern University (Natural Science), 2021, 42(10): 1400-1406. [6]Momeni A, Arabi H, Rezaei A, et al. Hot deformation behavior of austenite in HSLA-100 microalloyed steel[J]. Materials Science and Engineering A, 2011, 528(4/5): 2158-2163. [7]Gorni A A, Mei P R. Effect of controlled-rolling parameters on the ageing response of HSLA-80 steel[J]. Journal of Materials Processing Technology, 2008, 197(1-3): 374-378. [8]Das S K, Sivaprasad S, Das S, et al. The effect of variation of microstructure on fracture mechanics parameters of HSLA-100 steel[J]. Materials Science and Engineering A, 2006, 431(1-2): 68-79. [9]阚立烨, 朱 拓, 叶其斌, 等. 富Ni奥氏体对1 GPa级超高强海工钢强度与韧性的影响[J]. 材料与冶金学报, 2022, 21(3): 216-219. Kan Liye, Zhu Tuo, Ye Qibin, et al. Effect of Ni-rich austenite on strength and toughness of 1 GPa grade ultra-high strength offshore steel[J]. Journal of Materials and Metallurgy, 2022, 21(3): 216-219. [10]周 丹. 新一代440 MPa级水面舰船用钢的成分设计与性能研究[D]. 鞍山: 辽宁科技大学, 2007. Zhou Dan. The composition design and performance of new-generation 440 MPa steel for surface combatant ship[D]. Anshan: University of Science and Technology Liaoning, 2007. [11]Wu Wei, Liu Zhiyogn, Li Xiaogang, et al. Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere[J]. Materials Science and Engineering A, 2019, 759: 124-141. [12]Zhang Tianyi, Li Yilun, Li Xuan, et al. Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment[J]. Corrosion Science, 2022, 208: 110708. [13]Wu Wei, Wang Qiuyu, Yang Liu, et al. Corrosion and SCC initiation behavior of low-alloy high-strength steel microalloyed with Nb and Sb in a simulated polluted marine atmosphere[J]. Journal of Materials Research and Technology, 2020, 9(6): 12976-12995. [14]Jha A K, Prasad B K, Modi O P, et al. Correlating microstructural features and mechanical properties with abrasion resistance of a high strength low alloy steel[J]. Wear, 2003, 254(1/2): 120-128. [15]Ding Ran, Tang Di, Zhao Aimin. A novel design to enhance the amount of retained austenite and mechanical properties in low-alloyed steel[J]. Scripta Materialia, 2014, 88: 21-24. [16]Rafieazad M, Ghaffari M, Vahedi N A, et al. Microstructural evolution and mechanical properties of a low-carbon low-alloy steel produced by wire arc additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(5): 2121-2134. [17]Hayat F, Uzun H. Effect of heat treatment on microstructure, mechanical properties and fracture behaviour of ship and dual phase steel[J]. Journal of Iron and Steel Research, International, 2011, 18(8): 65-72. [18]Wang Li, Cheng Xiaoying, Peng Hao, et al. Effect of tempering temperature on hydrogen embrittlement in V-containing low alloy high strength steel[J]. Materials Letters, 2021, 302: 130327. [19]Du Yubin, Hu Xiaofeng, Zhang Shouqing, et al. Precipitation behavior of Cu-NiAl nanoscale particles and their effect on mechanical properties in a high strength low alloy steel[J]. Materials Characterization, 2022, 190: 112014. [20]Liang Guofang, Tan Qiyang, Liu Yingang, et al. Effect of cooling rate on microstructure and mechanical properties of a low-carbon low-alloy steel[J]. Journal of Materials Science, 2021, 56(5): 3995-4005. [21]陈连生, 张露友, 田亚强, 等. 低碳高强舰船用钢的CCT曲线及其组织性能[J]. 金属热处理, 2022, 47(4): 63-68. Chen Liansheng, Zhang Luyou, Tian Yaqiang, et al. CCT curves and microstructure and properties of low-carbon high strength marine steel[J]. Heat Treatment of Metals, 2022, 47(4): 63-68. |