[1]Purushotham Y, Balaji T, Kumar A, et al. Chemical and physical properties of tantalum powder[J]. Modern Physics Letters B, 2001, 15(20): 867-871. [2]Stelmakh V, Rinnerbauer V, Geil R D, et al. High-temperature tantalum tungsten alloy photonic crystals: Stability, optical properties and fabrication[J]. Applied Physics Letters, 2013, 103(12): 123903-123906. [3]Brocchi E A, Moura F J. Chlorination methods applied to recover refractory metals from tin slags[J]. Minerals Engineering, 2008, 21(2): 150- 156. [4]刘世友. 钽在高新技术中的应用[J]. 稀有金属与硬质合金, 1998(2): 55-57, 26. Liu Shiyou. Applications of tantalum in high-tech[J]. Rare Metals and Cemented Carbides, 1998(2): 55-57, 26. [5]朱国栋, 王守仁, 成 巍, 等. 激光清洗在金属表面处理中的应用研究进展[J]. 山东科学, 2019, 32(4): 38-45, 73. Zhu Guodong, Wang Shouren, Cheng Wei, et al. Advances in the application of laser cleaning to metal surface treatment[J]. Shandong Science, 2019, 32(4): 38-45, 73. [6]刘张慧, 胡海洋, 王建刚, 等. 锆合金表面改性工艺的研究进展[J]. 金属热处理, 2022, 47(12): 258-268. Liu Zhanghui, Hu haiyang, Wang Jiangang, et al. Research progress on surface modification of zirconium alloys[J]. Heat Treatment of Metals, 2022, 47(12): 258-268. [7]申 毅, 薛玉娜, 陈 汉, 等. 微弧表面处理对AZ31B镁合金耐腐蚀及耐腐蚀疲劳性能的影响[J]. 金属热处理, 2022, 47(8): 257-265. Shen Yi, Xue Yuna, Chen Han, et al. Effect of micro-arc surface treatment on corrosion resistance and corrosion fatigue resistance of AZ31B magnesium alloy[J]. Heat Treatment of Metals, 2022, 47(8): 257-265. [8]陈全训, 高德柱, 赵家生, 等. 中国钽业[M]. 北京: 冶金工业出版社, 2015. [9]石 文, 王 煜. 金属钽材表面强化处理[J]. 金属热处理, 2000, 25(5): 27-29. Shi Wen, Wang Yu. Handering treatment on tantalum surface[J]. Heat Treatment of Metals, 2000, 25(5): 27-29. [10]程 征, 伍喜庆, 杨平伟. 我国钽铌资源的特征及选矿技术[J]. 金属矿山, 2013(7): 97-100. Cheng Zheng, Wu Xiqing, Yang Pingwei. The characteristics of Ta-Nb resources and its beneficiation technology[J]. Metal Mine, 2013(7): 97-100. [11]刘建迪, 王静静, 李 伟, 等. 钽的提取研究进展[J]. 矿产保护与利用, 2021, 41(2): 163-173. Liu Jiandi, Wang Jingjing, Li Wei, et al. Research progress of tantalum extraction[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 163-173. [12]Edward C H C O, Hemantha K Y. Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears[J]. Journal of Materials Science and Technology, 2020, 49(14): 157-165. [13]陈 治, 李宝奎, 卢金生, 等. 渗氮处理在重载齿轮上的应用进展[J]. 金属热处理, 2023, 48(3): 104-111. Chen Zhi, Li Baokui, Lu Jinsheng, et al. Application and progress of nitriding treatment in heavy duty gears[J]. Heat Treatment of Metals, 2023, 48(3): 104-111. [14]唐全红, 庄祥麟, 方金法, 等. 钽及其合金的表面渗碳强化[J]. 稀有金属, 1991(2): 116-119. [15]郑 欣. 提高钽耐蚀性的表面处理法[J]. 稀有金属快报, 2002(4): 21-22. [16]周 喆, 罗 文, 张德元, 等. 钽表面非晶层的制备方法[J]. 材料保护, 2002(8): 32-33. Zhou Zhe, Luo Wen, Zhang Deyuan, et al. Preparation of tantalum amorphous surface layer[J]. Materials Protection, 2002(8): 32-33. [17]陈嘉林. 基于钽钨合金两段氮碳共渗强化机理研究[D]. 武汉: 武汉理工大学, 2019. Chen Jialin. Research on strengthening mechanism about two-step ion nitrocarburizing based on tantalum tungsten alloys[D]. Wuhan: Wuhan University of Technology, 2019. [18]周寰林. 钽表面离子渗碳改性研究[D]. 绵阳: 中国工程物理研究院, 2017. [19]周寰林, 胡 殷, 朱康伟, 等. 钽表面的甲烷等离子渗碳改性技术研究[J]. 真空科学与技术学报, 2018, 38(1): 48-52. Zhou Huanlin, Hu Yin, Zhu Kangwei, et al. Surface modification of tantalum sheets by methane plasma carburizing[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(1): 48-52. [20]李 佳, 闫晓东, 杨 银, 等. Ta及Ta-W 合金真空渗碳工艺研究[J]. 稀有金属, 2018, 42(9): 925-930. Li Jia, Yan Xiaodong, Yang Ying, et al. Vacuum carburization process of Ta and Ta-W alloys[J]. Chinese Journal of Rare Metal, 2018, 42(9): 925-930. [21]惠鹏飞. 间隙原子渗碳法制备金属(Ta、Mo、Ti6Al4V)表面碳化层的组织和性能研究[D]. 西安: 西安理工大学, 2019. Hui Pengfei. Microstructure and properties of carbide coatings on metal (Ta, Mo, Ti6Al4V) surface prepared by interstitial carburization[D]. Xi'an: Xi'an University of Technology, 2019. [22]赵鹏飞. 钽制微孔超薄材料离子氮化研究[D]. 太原: 太原理工大学, 2021. Zhao Pengfei, Plasma nitriding of tantalum microporous ultra-thin materials[D]. Taiyuan: Taiyuan University of Technology, 2021. [23]李 君. 热喷涂技术应用与发展调研分析[D]. 长春: 吉林大学, 2015. Li Jun. The study on application and development of thermal spray technology[D]. Changchun: Jilin University, 2015. [24]吕保霞. 铜在钽及掺氮钽表面的粘附性研究[J]. 铸造技术, 2013, 34(6): 711-713. Lü Baoxia. Research on adhesive of copper coating on surface of tantalum and nitrating tantalum[J]. Foundry Technology, 2013, 34(6): 711-713. [25]王 坤. 离散结构表面复合金属氢分离膜特性研究[D]. 重庆: 重庆大学, 2016. Wang Kun. Investigation on characteristics of composite metal hydrogen separation membranes with discrete structure surface[D]. Chongqing: Chongqing University, 2016. [26]王凯凯. Ta10W合金表面ZrB2-SiC涂层的高温抗氧化机理研究[D]. 沈阳: 东北大学, 2019. Wang Kaikai. High temperature oxidation resistance of ZrB2-SiC coating on Ta10W alloy[D]. Shenyang: Northeastern University, 2019. [27]Zhang Lei, Li Baoe, Zhang Xianlin, et al. Biological and antibacterial properties of TiO2 coatings containing Ca/P/Ag by one-step and two-step methods[J]. Biomedical Microdevices, 2020, 22(2): 1-8. [28]刘晋珲. 钛、锆、钽的微弧氧化膜层及其生物摩擦学性能研究[D]. 广州: 暨南大学, 2011. Liu Jinhui. Micro-arc oxidation films on titanium, zirconium, tantalum and their bio-tribological behaviors[D]. Guangzhou: Jinan University, 2011. [29]刘 玲. 钽钨合金微弧氧化复合膜层制备和摩擦学性能研究[D]. 成都: 电子科技大学, 2022. Liu Ling. Study on preparation and tribology performance of micro-arc oxidation composite coating on tantalum-tungsten alloy[D]. Chengdu: University of Electronic Science and Technology of China, 2022. [30]杨海彧, 李争显, 王毅飞. 钽表面微弧氧化陶瓷层的抗氧化性能[J]. 腐蚀与防护, 2015, 36(6): 563-568. Yang Haiyu, Li Zhengxian, Wang Yifei. Antioxidation of MAO layers on tantalum surface[J]. Corrosion and Protection, 20015, 36(6): 563-568. [31]李振宗, 薛亚珂, 高 华, 等. 微弧氧化和碱处理技术在多孔钽修复兔颅骨缺损中的应用[J]. 中国实验动物学报, 2019, 27(3): 316-322. Li Zhenzong, Xue Yake, Gao Hua, et al. Application of micro-arc oxidation and NaOH treatment in the repair of rabbit skull defect using bioactive tantalum metal[J]. Acta Laboratorium Animalis Scientia Sinica, 2019, 27(3): 316-322. [32]石惠君. 医用金属钽微弧氧化电解液对膜层性能影响[D]. 西安: 西安理工大学, 2019. Shi Huijun. Micro-arc oxidation electrolyte of medical metal tantalum on film performance[D]. Xi'an: Xi'an University of Technology, 2019. [33]王 犇. 电子束3D打印纯Ta及表面功能化处理研究[D]. 西安: 西安理工大学, 2022. Wang Ben. Surface founctionalization of selective electron beam melting pure tantalum[D]. Xi'an: Xi'an University of Technology, 2022. [34]王伟强, 王舒月, 于凤云, 等. 纯钽表面微弧氧化“类骨小梁”状多孔涂层的细胞相容性[J]. 表面技术, 2023, 52(4): 363-373. Wang Weiqiang, Wang Shuyue, Yu Fengyun, et al. Cytocompatibility of "trabecular bone-like" porous coating prepared by micro-arc oxidation on pure tantalum[J]. Surface Technology, 2023, 52(4): 363-373. [35]王舒月. 纯钽微弧氧化多孔涂层制备及性能表征[D]. 大连: 大连理工大学, 2022. Wang Shuyue. Preparation and characterization of porous coatings on pure tantalum by micro-arc oxidation[D]. Dalian: Dalian University of Technology, 2022. [36]周 伟, 陈 军, 赵永庆, 等. 不同表面处理下Ti-Ta合金丝的力学性能[J]. 表面技术, 2006(5): 12-13. Zhou Wei, Chen Jun, Zhao Yongqing, et al. Study on the mechanical properties of Ti-Ta alloy wire by different surface processing[J]. Surface Technology, 2006(5): 12-13. [37]胡 可. Ta在NaCl-KCl熔盐中的热腐蚀行为及表面处理的影响[D]. 武汉: 华中科技大学, 2020. Hu Ke. The hot corrosion behavior of Ta in NaCl-KCl melts and the effects of surface treatments[D]. Wuhan: Huazhong University of Science and Technology, 2020. [38]解永旭, 包玺芳, 韩 鹏, 等. 电容器级钽丝表面锈点形成机制的研究[J]. 粉末冶金工业, 2022, 32(6): 134-138. Xie Yongxu, Bao Xifang, Han Peng, et al. Study on the formation mechanism of rust point on the surface of capacitor stage tantalum wire[J]. Powder Metallurgy Industry, 2022, 32(6): 134-138. |