[1]李亮军, 张家敏, 迟宏宵, 等. Co微合金化对M2高速钢组织和性能的影响[J]. 金属热处理, 2022, 47(1): 73-78. Li Liangjun, Zhang Jiamin, Chi Hongxiao, et al. Effect of Co microalloying on microstructure and properties of M2 high speed steel[J]. Heat Treatment of Metals, 2022, 47(1): 73-78. [2]王丽仙, 葛昌纯, 郭双全, 等. 粉末冶金高速钢的发展[J]. 材料导报, 2010, 24(S1): 459-462. Wang Lixian, Ge Changchun, Guo Shuangquan, et al. Development of powder metallurgy high speed steel[J]. Materials Review, 2010, 24(S1): 459-462. [3]Chang S H, Huang C L, Huang K T, et al. Improvement of the wear and corrosion behaviors of DLC/oxynitriding duplex-treated PM60 high-speed steel via various power densities of DC-pulsed plasma enhanced CVD[J]. ISIJ International, 2016, 56(12): 2276-2283. [4]邓玉昆, 陈景榕, 王世章. 高速工具钢[M]. 北京: 冶金工业出版社, 2002. [5]赵志刚, 仇圣桃, 朱 荣. M2钢连铸过程中碳化物析出行为[J]. 材料热处理学报, 2016, 37(7): 214. Zhao Zhigang, Qiu Shengtao, Zhu Rong, et al. Precipitation behavior of carbides during continuous casting of M2 steel[J]. Transactions of Materials and Heat Treatment, 2016, 37(7): 214. [6]王启明, 成国光, 黄 宇. M2高速钢大尺寸碳化物的形貌特征及析出机理[J]. 钢铁, 2018, 53(1): 65-71. Wang Qiming, Cheng Guoguang, Huang Yu. Morphology and precipitation mechanism of large carbides in M2 high speed steel[J]. Iron & Steel, 2018, 53(1): 65-71. [7]刘笑笑, 张 铮, 张 杰, 等. 回火温度对柔性齿轮钢40CrNiMo组织及力学性能的影响[J]. 金属热处理, 2021, 46(8): 99-104. Liu Xiaoxiao, Zhang Zheng, Zhang Jie, et al. Effect of tempering temperature on microstructure and mechanical properties of 40CrNiMo steel for flexible gear[J]. Heat Treatment of Metals, 2021, 46(8): 99-104. [8]Zhou B, Shen Y, Chen J, et al. Evolving mechanism of eutectic carbide in as-cast AISI M2 high-speed steel at elevated temperature[J]. Journal of Shanghai Jiaotong University, 15(4): 463-471. [9]赵峥嵘, 曹玉龙, 万响亮, 等. W3Mo4Cr5V6高速钢中碳化物的高温转变行为[J]. 武汉科技大学学报, 2022, 45(1): 1-8. Zhao Zhengrong, Cao Yulong, Wan Xiangliang, et al. High-temperature carbide transformation behavior of W3Mo4Cr5V6 high-speed steel[J]. Journal of Wuhan University of Science and Technology, 2022, 45(1): 1-8. [10]罗乙娲. M42 高速钢中碳化物的析出机理与转化规律研究[D]. 北京: 北京科技大学, 2019. Luo Yiwa. Study on precipitation mechanism and transformation law of carbides in M42 high speed steel[D]. Beijing: University of Science and Technology Beijing, 2019. [11]Luo Y, Guo H, Guo J, etal. Gleeble-simulated and semi-industrial studies on the microstructure evolution of Fc-Co-Cr-Mo-W-V-C alloy during hot deformation[J]. Materials, 2018, 11: 2577. [12]Xu L, Xing J, Wei S, et al. Optimization of heat treatment technique of high-vanadium high-speed steel based on back-propagation neural networks[J]. Materials and Design, 2007, 28: 1425-1432. [13]Liu Y, Ning Y, Yao Z K, et al. Hot deformation behavior of the 1.15C-4.00Cr-3.00V-6.00W-5.00Mo powder metallurgy high speed steel[J]. Materials and Design, 2014, 54: 54-63. [14]Liu H C, Shi W, He Y L, et al. The effect of alloy elements on selective oxidation and galvanizability of TRIP-aided steel[J]. Surface And Interface Analysis, 2010(42): 1685-1689. [15]文小浩, 陈 胜, 丁小芹, 等. SPS烧结M42粉末冶金高速钢的显微组织与性能[J]. 粉末冶金技术, 2010, 28(1): 39-42 Wen Xiaohao, Chen Sheng, Ding Xiaoqin, et al. Microstructure and mechanical properties of PM M42 high speed steel prepared by spark plasma sintering[J]. Powder Metallurgy Technology, 2010, 28(1): 39-42. [16]迟宏宵, 徐辉霞, 方 峰, 等. M2高速钢的高温力学性能[J]. 中国冶金, 2016, 26(1): 31. Chi Hongxiao, Xu Huixia, Fang Feng, et al. High temperature mechanical properties of M2 high speed steel[J]. China Metallurgy, 2016, 26(1): 31. [17]Peng H, Hu L, Ngai T, et al. Effects of austenitizing temperature on microstructure and mechanical property of a 4 GPa-grade PM high-speed steel[J]. Materials Science & Engineering A, 2018, 719: 21-26. [18]谢 有, 成国光, 孟晓玲, 等. 含钛H13热作模具钢中大尺寸析出物特征及热稳定性研究[C]//第十届中国钢铁年会暨第六届宝钢学术会议. 上海: 中国金属学会, 2015: 265. Xie You, Cheng Guoguang, Meng Xiaoling, et al. Large precipitates in titanium-containing H13 tool steel[C]//The 10th China Steel Annual Conference and the 6th Baosteel Academic Conference. Shanghai: The Chinese Society for Metals, 2015: 265. [19]贾寓真, 吴懿萍, 匡旭光, 等. 传统冶炼高速钢E M42与粉末冶金高速钢ASP2042的回火特性[J]. 金属热处理, 2018, 43(6): 211-216. Jia Yuzhen, Wu Yiping, Kuang Xuguang, et al. Tempering characteristics of conventional high-speed steel E M42 and powder metallurgical high-speed steel ASP2042[J]. Heat Treatment of Metals, 2018, 43(6): 211-216. |