[1]张存帅, 刘吉猛, 李 皓, 等. 固溶温度及时间对高氮不锈钢耐蚀性能的影响[J]. 金属热处理, 2022, 47(8): 141-147. Zhang Cunshuai, Liu Jimeng, Li Hao, et al. Effect of solution treatment temperature and time on corrosion resistance of high nitrogen stainless steel[J]. Heat Treatment of Metals, 2022, 47(8): 141-147. [2]Massoud Mahmoudi. Challenging cases in allergic and immunologic diseases of the skin[J]. Medical Journal of Australia, 2010, 1(3): 108-109. [3]顾静怡, 李润涛, 贺 泽, 等. 口腔种植手术器械用不锈钢钛改性低温离子渗氮组织和性能[J]. 金属热处理, 2023, 48(12): 201-205. Gu Jingyi, Li Runtao, He Ze, et al. Microstructure and properties of Ti-modified low temperature plasma nitrided stainless steel used in dental implant surgical instruments[J]. Heat Treatment of Metals, 2023, 48(12): 201-205. [4]李振锋, 王鑫铭, 丁 卉, 等. 200系不锈钢热轧缺陷分析[J]. 热加工工艺, 2021, 50(3): 159-162. Li Zhenfeng, Wang Xinming, Ding Hui, et al. Analysis of hot-rolled defects of 200 series stainless steel[J]. Hot Working Technology, 2021, 50(3): 159-162. [5]Benegra M, Couto G H, Bernardelli E A. The effect of nitrided layer on antibacterial properties of biomedical 316L stainless steel[J]. Brazilian Congress on Biomedical Engineering, 2022, 83: 127-131. [6]Hung C F, Wu C Z, Lee W F, et al. The effect of nitrided layer on antibacterial properties for biomedical stainless steel[J]. Physics Procedia, 2012, 32: 914 [7]吴 裕, 唐 奇, 苏晓峰, 等. 奥氏体不锈钢表面激光熔覆锆涂层的组织及硬度[J]. 金属热处理, 2023, 48(5): 12-17. Wu Yu, Tang Qi, Su Xiaofeng, et al. Microstructure and hardness of laser clad zirconium coating on austenitic stainless steel[J]. Heat Treatment of Metals, 2023, 48(5): 12-17. [8]丁国刚, 隋小波, 刘可心, 等. 固溶渗氮对Cr18Mn21Mo2.5钢组织及性能的影响[J]. 表面技术, 2020, 49(9): 324-331, 356. Ding Guogang, Sui Xiaobo, Liu Kexin, et al. Effect of solution nitriding on structure and properties of Cr18Mn21Mo2.5 steel[J]. Surface Technology, 2020, 49(9): 324-331, 356. [9]Heras Las, Ybarra Gabriel, Lamas Diego, et al. Plasma nitriding of 316L stainless steel in two different N2-H2 atmospheres-influence on microstructure and corrosion resistance[J]. Surface and Coatings Technology, 2017, 313: 45-55. [10]Lakshmi Deepak Tadepalli, Ananda Mithra Gosala, Lokesh Kondamuru, et al. A review on effects of nitriding of AISI409 ferritic stainless steel[J]. Materials Today: Proceedings, 2020, 26: 1014-1020. [11]Daisuke Kuroda, Takao Hanawa, Takaaki Hibaru, et al. New manufacturing process of nickel-free austenitic stainless steel with nitrogen absorption treatment[J]. Science Forum, 2003, 44(3): 414-420. [12]Envelope M A P P, Dharmalingam G, Salunkhe S. Microstructural evaluation of gas nitrided AISI 316 LN austenitic stainless steel[J]. Materials Today: Proceedings, 2022, 68: 1887-1890. [13]潘 邻. 表面改性热处理技术与应用[M]. 北京: 机械工业出版社, 2006. [14]Borges C, Hennecke S, Pfender E. Decreasing chromium precipitation in AISI 304 stainless steel during the plasma-nitriding process[J]. Surface & Coatings Technology, 2000, 123(2-3): 112-122. [15]魏咏梅, 李双喜, 汪美桃, 等. 奥氏体不锈钢氮钛离子共渗工艺[J]. 金属热处理, 2023, 48(9): 116-121. Wei Yongmei, Li Shuangxi, Wang Meitao, et al. Nitrogen titanium ion co-infiltration process for austenitic stainless steel[J]. Heat Treatment of Metals, 2023, 48(9): 116-121. [16]崔 延, 张青绒, 霍登平, 等. 高碳铬不锈钢440C淬火过程晶间氧化与增脱碳研究[J]. 热加工工艺, 2018, 47(12): 195-197, 200. Cui Yan, Zhang Qingrong, Huo Dengping, et al. Study on intergranular oxidation and decarburization after quenching of high carbon-chromium stainless steel 440C[J]. Hot Working Technology, 2018, 47(12): 195-197, 200. [17]Zhou R, Northwood D O, Liu C. On nitrogen diffusion during solution treatment in a high nitrogen austenitic stainless steel[J]. Journal of Materials Research and Technology, 2020, 9(2): 2331-2337. [18]Hosseini V A, Karlsson L. Physical and kinetic simulation of nitrogen loss in high temperature heat affected zone of duplex stainless steels[J]. Materialia, 2020, 9(2): 2331-2337. [19]Su Wenyong, Zhang Ruilin, Shao Bin. Computation of diffusion activation energies of C, N in γFe[J]. Journal of Beijing Institute of Technology (English Edition), 2002(1): 105-108. [20]Zeng Yingzhi, Li Qianxiao, Bai Kewu. Prediction of interstitial diffusion activation energies of nitrogen, oxygen, boron and carbon in bcc, fcc, and hcp metals using machine learning[J]. Computational Materials Science, 2018, 144: 232-247. [21]王 鼎, 周艳文, 张开策, 等. 离子氮化中氮在典型钢中的扩散行为研究[J]. 材料导报, 2022, 36(S1): 487-492. Wang Ding, Zhou Yanwen, Zhang Kaice, et al. Study on diffusion behavior of nitrogen in typical steel by ionic nitriding[J]. Materials Reports, 2022, 36(S1): 487-492. [22]王会斌, 邱荣春, 陈 葵, 等. 32Cr3MoVE钢的气体渗氮工艺[J]. 金属热处理, 2021, 46(9): 153-158. Wang Huibin, Qiu Rongchun, Chen Kui, et al. Gas nitriding process for 32Cr3MoVE steel[J]. Heat Treatment of Metals, 2021, 46(9): 153-158. [23]Huang Zhen, Guo Zixin, Liu Lei, et al. Structure and corrosion behavior of ultra-thick nitrided layer produced by plasma nitriding of austenitic stainless steel[J]. Surface & Coatings Technology, 2021, 405: 126689. [24]韩 啸, 贺瑞军, 朱 硕, 等. 基于Ansys模拟的钛合金筒形工件离子渗氮温度场分析[J]. 金属热处理, 2023, 48(6): 258-264. Han Xiao, He Ruijun, Zhu Shuo, et al. Analysis on temperature field in plasma nitriding of titanium alloy cylindrical workpiece based on Ansys simulation[J]. Heat Treatment of Metals, 2023, 48(6): 258-264. [25]王耘涛. 高温渗氮制备高氮不锈钢工艺及其性能的研究[D]. 沈阳: 沈阳工业大学, 2006. [26]李 晓. 不锈钢高温增压氨气氮化工艺及组织性能[D]. 秦皇岛: 燕山大学, 2013. |