[1]赵冬梅, 倪 磊, 蒋东旭, 等. 深冷处理对DC53冷作模具钢摩擦磨损性能的影响[J]. 金属热处理, 2023, 48(11): 250-254. Zhao Dongmei, Ni Lei, Jiang Dongxu, et al. Effect of cryogenic treatment on friction and wear properties of DC53 cold work die steel[J]. Heat Treatment of Metals, 2023, 48(11): 250-254. [2]Tu X, Xiao L, Cai Z, et al. The microstructure evolution and dimensional stability of TiC steel-bonded cemented carbide during stabilizing heat treatments[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113: 106213. [3]Farivar H, Prahl U, Hans M, et al. Microstructural adjustment of carburized steel components towards reducing the quenching-induced distortion[J]. Journal of Materials Processing Technology, 2019, 264: 313-327. [4]邱华兴. 高强韧冷冲压模具钢组织与性能研究[D]. 天津: 天津职业技术师范大学, 2022. [5]Surm H, Frerichs F, Lübben T, et al. Distortion of rings due to inhomogeneous temperature distribution[J]. Materialwissenschaft und Werkstofftechnik, 2012, 43(1/2): 29-36. [6]吴正环, 谷历文, 黄历锋, 等. 典型热处理后不同冷作模具钢的残余奥氏体及对冲击韧性和尺寸稳定性的影响[J]. 理化检验-物理分册, 2021, 57(10): 1-5, 11. Wu Zhenghuan, Gu Liwen, Huang Lifeng, et al. Residual austenite of different cold working die steels after the typical heat treatment and its influence on impact toughness and dimensional stability[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing) , 2021, 57(10): 1-5, 11. [7]赵昌盛. 精密复杂模具热处理变形及预防[J]. 机械工人(热加工), 2005(11): 36-38. [8]王吉星. 稳定处理对渗碳G13Cr4Mo4Ni4V钢尺寸稳定性的影响[D]. 沈阳: 沈阳化工大学, 2021. [9]Atraszkiewicz R, Januszewicz B, Kaczmarek L, et al. High pressure gas quenching: Distortion analysis in gears after heat treatment[J]. Materials Science and Engineering A, 2012, 558: 550-557. [10]Andersch C, Ehlers M, Hoffmann F, et al. Systematic analysis of the correlation between part geometry and distortion due to heat treatment[J]. Materialwissenschaft und Werkstofftechnik, 2006, 37(1): 23-28. [11]Li J, Feng Y, Zhang H, et al. Thermomechanical analysis of deep cryogenic treatment of navy C-ring specimen[J]. Journal of Materials Engineering and Performance, 2014, 23(12): 4237-4250. [12]Leskovsek V, Ule B. Influence of deep cryogenic treatment on microstructure, mechanical properties and dimensional changes of vacuum heat-treated high-speed steel[J]. Heat Treatment of Metals, 2002, 29(3): 72-76. [13]Sonar T, Lomte S, Gogte C, et al. Minimization of distortion in heat treated AISI D2 tool steel: Mechanism and distortion analysis[J]. Procedia Manufacturing, 2018, 20: 113-118. [14]袁志钟, 陈 露, 张伯承, 等. 冷作模具钢DC53热处理增韧技术[J]. 金属热处理, 2023, 48(10): 15-22. Yuan Zhizhong, Chen Lu, Zhang Bocheng, et al. Heat treatment technologies for toughening of cold working die steel DC53[J]. Heat Treatment of Metals, 2023, 48(10): 15-22. [15]邱华兴, 吴正环, 黎肖辉, 等. 稳定化处理对DC53钢力学性能及尺寸稳定性的影响[J]. 金属热处理, 2021, 46(9): 138-141. Qiu Huaxing, Wu Zhenghuan, Li Xiaohui, et al. Effect of stabilization treatment on mechanical properties and dimensional stability of DC53 steel[J]. Heat Treatment of Metals, 2021, 46(9): 138-141. [16]刘梦思. 析出相对保持环用Mn18Cr18N钢力学性能影响研究[D]. 大连: 大连理工大学, 2018. [17]彭 旭. 5CrNiMoV热作模具钢的热处理过程研究及数值模拟[D]. 昆明: 昆明理工大学, 2020. [18]曹伟涛, 郑明杰, 丁文艺, 等. Fe51Mn30Cr19低活化双相多主元合金中χ相与M23C6碳化物在475 ℃回火过程中的析出行为[J]. 金属热处理, 2020, 45(6): 98-103. Cao Weitao, Zheng Mingjie, Ding Wenyi, et al. Precipitation behavior of χ phase and M23C6 carbide in low-activation duplex multi-principal element alloy Fe51Mn30Cr19 during tempering at 475 ℃[J]. Heat Treatment of Metals, 2020, 45(6): 98-103. |