[1]胡士廉, 吕 彦, 胡 俊, 等. 高强韧厚壁炮钢材料的发展[J]. 兵器材料科学与工程, 2018, 41(6): 108-112. Hu Shilian, Lü Yan, Hu Jun, et al. Progress in high strength and toughness of steel material for thick-wall cannon[J]. Ordnance Material Science and Engineering, 2018, 41(6): 108-112. [2]Du Yunfei, Lu Huihu, Sheng Xingquan. Coupled effects of banded structure and carbide precipitation on mechanical performance of Cr-Ni-Mo-V steel[J]. Materials Science and Engineering A, 2022, 832: 142478. [3]Wen Tao, Hu Xiaofeng, Song Yuanyuan, et al. Carbides and mechanical properties in a Fe-Cr-Ni-Mo high-strength steel with different V contents[J]. Materials Science and Engineering A, 2013, 588: 201-207. [4]Maropoulos S, Paul J D H, Ridley N. Microstructure-property relationships in tempered low alloy Cr-Mo-3. 5Ni-V steel[J]. Materials Science and Technology, 1993, 9(11): 1014-1020. [5]Zhang Jun, Ding Hua, Misra R D K, et al. Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel[J]. Materials Science and Engineering A, 2015, 641: 242-248. [6]张伟锋, 何肖飞, 尉文超, 等. Nb微合金化对Cr-Ni-Mo-V系高强钢组织及力学性能的影响[J]. 金属热处理, 2023, 48(1): 29-34. Zhang Weifeng, He Xiaofei, Yu Wenchao, et al. Effect of Nb microalloying on microstructure and mechanical properties of Cr-Ni-Mo-V high-strength steel[J]. Heat Treatment of Metals, 2023, 48(1): 29-34. [7]Dong Ji, Zhou Xiaosheng, Liu Yongchang, et al. Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering[J]. Materials Science and Engineering A, 2017, 683: 215-226. [8]廖 佳, 付 涛, 王晓巍, 等. 回火温度对大尺寸锻态35CrMo钢微观组织和力学性能的影响[J]. 金属热处理, 2022, 47(8): 232-236. Liao Jia, Fu Tao, Wang Xiaowei, et al. Influence of tempering temperature on microstructure and mechanical properties of forged 35CrMo steel with large-scale[J]. Heat Treatment of Metals, 2022, 47(8): 232-236. [9]张贺全, 谢撰业, 朱 鑫, 等. 34CrNi3MoV钢箱体热处理工艺优化[J]. 金属热处理, 2023, 48(5): 224-228. Zhang Hequan, Xie Zhuanye, Zhu Xin, et al. Optimization of heat treatment process for 34CrNi3MoV steel box[J]. Heat Treatment of Metals, 2023, 48(5): 224-228. [10]乔志霞. 连续冷却30CrNi3MoV超高强钢固态相变行为[D]. 天津: 天津大学, 2010. Qiao Zhixia. Solid-phase transformation behaviors in continuously-cooled ultra-high-strength 30CrNi3MoV steel[D]. Tianjin: University of Tianjin, 2010. [11]高俊华, 杜云飞, 赵 宇, 等. 奥氏体化温度对铁素体耐热钢时效过程中微观组织演化的影响[J]. 中北大学学报(自然科学版), 2023, 44(6): 692-698. Gao Junhua, Du Yunfei, Zhao Yu, et al. Effects of austenitizing temperature on the microstructure evolution of modified ferritic heat resistant steel upon aging treatment[J]. Journal of North University of China (Natural Science Edition), 2023, 44(6): 692-698. [12]Krauss G. Solidification, segregation, and banding in carbon and alloy steels[J]. Metallurgical and Materials Transactions B, 2003, 34(6): 781-792. [13]Wang Yunlong, Chen Yinli, Yu Wei. Effect of Cr/Mn segregation on pearlite-martensite banded structure of high carbon bearing steel[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(4): 665-675. [14]Sun Junjie, Jiang Tao, Wang Yingjun, et al. Ultrafine grained dual-phase martensite/ferrite steel strengthened and toughened by lamella structure[J]. Materials Science and Engineering A, 2018, 734: 311-317. [15]刘成宝, 翟正龙, 窦圣朋, 等. 齿轮钢SAE8620H的带状组织[J]. 材料热处理学报, 2015, 36(2): 155-161. Liu Chengbao, Zhai Zhenglong, Dou Shengpeng, et al. Banded structure of a gear steel SAE8620H[J]. Transactions of Materials and Heat Treatment, 2015, 36(2): 155-161. |