[1]王念欣, 曾 晖, 王成镇, 等. 海洋平台用钢种EH36的生产实践[J]. 天津冶金, 2022, 238(2): 20-23. Wang Nianxin, Zeng Hui, Wang Chengzhen, et al. Production practice of EH36 steel for offshore platform[J]. Tianjin Metallurgy, 2022, 238(2): 20-23. [2]Zhu Q, Zhang P, Peng X, et al. Fatigue crack growth behavior and fracture toughness of EH36 TMCP steel[J]. Materials, 2021, 14(21): 6621. [3]Xiong X L, Ma H X, Tao X, et al. Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron[J]. Electrochimica Acta, 2017, 255: 230-238. [4]Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27446-27457. [5]Yamabe J, Awane T, Murakami Y. Hydrogen trapped at intermetallic particles in aluminum alloy 6061-T6 exposed to high-pressure hydrogen gas and the reason for high resistance against hydrogen embrittlement[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24560-24568. [6]唐才宇, 杨思泽, 崔莲顺. 2.25Cr-1Mo钢和FV520B钢的氢脆敏感性对比试验研究[J]. 风机技术, 2022, 64(4): 64-67. Tang Caiyu, Yang Size, Cui Lianshun. Study on hydrogen embrittlement between 2.25Cr-1Mo steel and FV520B steel[J]. Chinese Journal of Turbomachinery, 2022, 64(4): 64-67. [7]刘朝霞, 刘 俊, 孟 羽, 等. 热处理工艺对130 mm厚EH36钢板组织和性能的影响研究[J]. 宽厚板, 2020, 26(6): 1-5. Liu Zhaoxia, Liu Jun, Men Yu, et al. Studying the effects of heat treatment process on the microstructure and mechanical properties of 130 mm thickness EH36 steel plate[J]. Wide and Heavy Plate, 2020, 26(6): 1-5. [8]薛曙冰, 张大征, 李维娟, 等. 显微组织对海洋立管用钢氢扩散行为的影响[J]. 辽宁科技大学学报, 2022, 45(1): 31-37. Xue Shubing, Zhang Dazheng, Li Weijuan, et al. Effects of microstructure on hydrogen diffusion behavior in marine riser steel[J]. Journal of University of Science and Technology Liaoning, 2022, 45(1): 31-37. [9]张慧云, 孟宪明, 郑留伟, 等. 敏化处理对不同状态304奥氏体不锈钢氢脆敏感性的影响[J]. 金属热处理, 2021, 46(8): 164-169. Zhang Huiyun, Meng Xianming, Zheng Liuwei, et al. Effect of sensitization on hydrogen embrittlement sensitivity of 304 austenitic stainless steel in different states[J]. Heat Treatment of Metals, 2021, 46(8): 164-169. [10]Bian Shouyuan, Zhao Xin, Li Shengli, et al. Numerical simulation, microstructure, properties of EH40 ultra-heavy plate under gradient temperature rolling[J]. Materials Science and Engineering A, 2020, 791: 139778. [11]Schaffne T, Hartmaier A, Kokotin V, et al. Analysis of hydrogen diffusion and trapping in ultra-high strength steel grade[J]. Journal of Alloys and Compounds, 2018, 746: 557-566. [12]刘清华, 唐慧文, 斯庭智. 氢陷阱对钢氢脆敏感性的影响[J]. 材料保护, 2018, 51(11): 127-132. Liu Qinghua, Tang Huiwen, Si Tingzhi. Effects of hydrogen traps on the hydrogen embrittlement susceptibility of steel[J]. Material Protection, 2018, 51(11): 127-132. [13]Thomas A, Szpunar J A. Visualisation of diffusion sites and measurement of hydrogen traps in hot-rolled pipes[J]. Materials Science and Technology, 2020, 36(17): 1870-1882. [14]王海波, 徐震霖, 胡学文, 等. 热轧超高强度复相钢的氢脆敏感性[J]. 金属热处理, 2021, 46(8): 51-56. Wang Haibo, Xu Zhenlin, Hu Xuewen, et al. Hydrogen embrittlement susceptibility of a hot-rolled ultra-high strength complex phase steel[J]. Heat Treatment of Metals, 2021, 46(8): 51-56. [15]张渤涛, 李淑慧, 李永丰, 等. 应力三轴度对淬火态硼钢氢脆敏感性的影响[J]. 材料研究学报, 2022, 36(10): 739-746. Zhang Botao, Li Shuhui, Li Yongfeng, et al. Effect of stress triaxiality on hydrogen embrittlement susceptibility of quenched boron steel B1500HS[J]. Chinese Journal of Materials Research, 2022, 36(10): 739-746. [16]Hejazi D, Saleh A A, Haq A, et al. Role of microstructure in susceptibility to hydrogen embrittlement of X70 microalloyed steel[C]//Trans Tech Publications. 2014: 961-966. [17]赵林林, 刘 需, 年保国. 先进高强钢氢致断裂的研究[J]. 河北冶金, 2020(5): 7-10. Zhao Linlin, Liu Xu, Nian Baoguo. Research of hydrogen induced fracture in advanced high strength steel[J]. Hebei Metallurgy, 2020(5): 7-10. [18]Yao J, Cahoon J R. Experimental studies of grain boundary diffusion of hydrogen in metals[J]. Acta Metallurgica et Materialia, 1991, 39(1): 119-126. [19]Arafin M A, Szpunar J A. Effect of bainitic microstructure on the susceptibility of pipelinesteels to hydrogen induced cracking[J]. Materials Science and Engineering A, 2011, 528(15): 4927-4940. |