[1]王 璐, 肖志霞, 赵 琳, 等. 高温合金Inconel718、Inconel706和Inconel706M电渣重熔组织均匀性[J]. 铸造技术, 2020, 41(1): 9-14. Wang Lu, Xiao Zhixia, Zhao Lin, et al. Homogeneity of electroslag remelting microstructure of superalloy Inconel718, Inconel706 and Inconel706M[J]. Foundry Technology, 2020, 41 (1): 9-14. [2]刘 刚, 刘 林, 赵新宝, 等. 一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析[J]. 金属学报, 2010, 46(1): 77-83. Liu Gang, Liu Lin, Zhao Xinbao, et al. Microstructure and microsegregation in a Ni-based single crystal superalloy directionally solidified under high thermal gradient[J]. Acta Metallurgica Sinica, 2010, 46(1): 77-83. [3]程体娟, 于鸿垚, 毕中南, 等. 固溶处理对新型镍钴基高温合金显微组织及力学性能的影响[J]. 金属热处理, 2023, 48(4): 97-104. Cheng Tijuan, Yu Hongyao, Bi Zhongnan, et al. Effect of solution treatment on microstructure and mechanical properties of a novel nickel-cobalt-based superalloy[J]. Heat Treatment of Metals, 2023, 48(4): 97-104. [4]吕 达, 韩彦光, 崔 毅, 等. GH4169高温合金的热加工工艺[J]. 金属热处理, 2023, 48(8): 132-137. Lü Da, Han Yanguang, Cui Yi, et al. Hot working process of GH4169 superalloy[J]. Heat Treatment of Metals, 2023, 48(8): 132-137. [5]杨雨轩, 王 晔, 刘国怀, 等. 热处理过程中DD6单晶高温合金的组织演化规律与力学性能[J]. 金属热处理, 2022, 47(11): 1-11. Yang Yuxuan, Wang Ye, Liu Guohuai, et al. Microstructure evolution and mechanical properties of DD6 single crystal superalloy during heat treatment process[J]. Heat Treatment of Metals, 2022, 47(11): 1-11. [6]王树森, 王振江, 高明远, 等. 均匀化温度对K465合金组织与性能的影响[J]. 金属热处理, 2022, 47(1): 167-171. Wang Shusen, Wang Zhenjiang, Gao Mingyuan, et al. Effect of homogenizing temperature on microstructure and mechanical properties of K465 superalloy[J]. Heat Treatment of Metals, 2022, 47(1): 167-171. [7]颜晓峰, 董建新, 石照夏, 等. 镍基高温合金GH4282的凝固和偏析行为[J]. 稀有金属材料与工程, 2019, 48(10): 3183-3189. Yan Xiaofeng, Dong Jianxin, Shi Zhaoxia, et al. Solidification and segregation behavior of nickel-based superalloy GH4282[J]. Rare Metal Materials and Engineering, 2019, 48(10): 3183-3189. [8]缪竹骏, 单爱党, 王 威, 等. 利用共聚焦扫描激光显微镜观察一种常见高温合金的凝固过程[J]. 中国有色金属学报, 2011, 21(2): 236-242 Miao Zhujun, Shan Aidang, Wang Wei, et al. Solidification process of conventional superalloy by confocal scanning laser microscope[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(2): 236-242. [9]谷 雨, 杨树峰, 赵 朋, 等. 镍基高温合金GH4738的凝固偏析和碳化物析出行为[J]. 中国冶金, 2021, 31(7): 13-21. Gu Yu, Yang Shufeng, Zhao Peng, et al. Solidification segregation and carbide precipitation behavior of nickel-based superalloy GH4738[J]. China Metallurgy, 2021, 31(7): 13-21. [10]赵广迪, 臧喜民, 赵 卓. 镍基高温合金U720Li的熔化和凝固过程原位观察[J]. 稀有金属材料与工程, 2020, 49(11): 3809-3815. Zhao Guangdi, Zang Ximin, Zhao Zhuo. In-situ observations of melting and solidification processes of Ni-based superalloy U720Li[J]. Rare Metal Materials and Engineering, 2020, 49(11): 3809-3815. [11]丁雨田, 豆正义, 高钰璧, 等. 原位观察不同冷却速率下GH3625合金的凝固过程[J]. 材料导报, 2017, 31(24): 150-155. Ding Yutian, Dou Zhengyi, Gao Yubi, et al. In-situ observation of solidification process of GH3625 superalloy at different cooling rates[J]. Materials Review, 2017, 31(24): 150-155. [12]王 威, 轩福贞, 缪竹骏, 等. 不同冷速下GH4169高温合金凝固过程的原位观察[J]. 机械工程材料, 2011, 35(9): 64-67, 71. Wang Wei, Xuan Fuzhen, Miao Zhujun, et al. In-situ observation of solidification process of GH4169 superalloy at different cooling rates[J]. Materials for Mechanical Engineering, 2011, 35(9): 64-67, 71. [13]许桐舟, 潘秀红, 张明辉, 等. 原位观察镍基高温合金CMSX-4缩松形成过程及机理研究[J]. 稀有金属材料与工程, 2021, 50(4): 1113-1117. Xu Tongzhou, Pan Xiuhong, Zhang Minghui, et al. In-situ observation of shrinkage formation and its mechanism during Ni-based CMSX-CMSX-4 superalloy solidification [J]. Rare Metal Materials and Engineering, 2021, 50(4): 1113-1117. [14]张海宝, 刘福斌, 李花兵, 等. 冷却速率对N06625合金凝固过程微观偏析的影响[J]. 中国冶金, 2022, 32(12): 48-56. Zhang Haibao, Liu Fubin, Li Huabing, et al. Effect of cooling rate on microsegregation during solidification of N06625 alloy[J]. China Metallurgy, 2022, 32 (12): 48-56. [15]黄启今, 刘国权. 通用软件Microsoft Word在显微组织定量分析中的应用[J]. 中国体视学与图像分析, 2002, 7(3): 182-184. Huang Qijin, Liu Guoquan. Application of Microsoft Word in quantitative microstructures analysis[J]. Chinese Journal of Stereology and Image Analysis, 2002, 7(3): 182-184. [16]张习博. 基于Origin软件的化工原理实验曲线拟合方法与应用[J]. 粘接, 2019, 40(9): 122-126. Zhang Xibo. Method and application of chemical engineering principle experiment curve fitting based on Origin software[J]. Adhesion, 2019, 40(9): 122-126. [17]Aminorroaya S, Dippenaar R. A novel approach to simulate segregation at the centreline of continuously cast steel using laser-scanning confocal microscopy[J]. Journal of Microscopy, 2010, 227(2): 87-91. |