[1]Reed R C. The Superalloys Fundamentals and Applications[M]. Cambridge: Cambridge University Press, 2006: 2-19. [2]Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361-374. [3]Thomas M, Murray S, Furrer D. Inducing new materials into aero engines-risks and rewards, a user's perspective[C]//7th International Symposium on Superalloy 718 and Derivatives. Pittsburgh, PA: TMS, 2010, 718: 3-11. [4]Liu C T, Sikka V K. Nickel aluminides for structural use[J]. JOM, 1986, 38(5): 19-21. [5]Bertocci U, Fink J L, Hall D E, et al. Passivity and passivity breakdown in nickel aluminide[J]. Corrosion Science, 1990, 3(l): 471-478. [6]Ricker R E, Hall D E, Fink J L. The effect of aqueous environments on the fracture-behavior of ductile nickel aluminide[J]. Scripta Metallurgica et Materialia, 1990, 24(2): 291-296. [7]Ricker R E. Origins of the aqueous corrosion and stress corrosion cracking behavior of ductile nickel aluminide[J]. Materials Science and Engineering A, 1995, 198(1/2): 231-238. [8]Aoki K, Izumi O. Improvement in room temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition[J]. Journal of the Japan Institute Metals, 1979, 43(12): 1190-1196. [9]Aoki K. Ductilization of L12 intermetallic compound Ni3Al by microalloying with boron[J]. Materials Transactions, JIM, 1990, 31(6): 443-448. [10]Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al[J]. Acta Metallurgica, 1985, 33(2): 213-229. [11]Horton J A, Miller M K. Atom probe analysis of grain boundaries in rapidly-solidified Ni3Al[J]. Acta Metallurgica, 1987, 35(1): 133-141. [12]Tian L Y, LizÁrraga R, Larsson H, et al. A first principles study of the stacking fault energies forfcc Co-based binary alloys[J]. Acta Materialia, 2017, 136: 215-223. [13]Wen D, Titus M S. First-principles study of Suzuki segregation at stacking faults in disordered face-centered cubic Co-Ni alloys[J]. Acta Materialia, 2021, 221: 117358. [14]Xiao X, Guo J T, Yu H P. Microstructure and mechanical properties of NiAl (Ti)-Cr(Mo) eutectic alloy[J]. Acta Metallurgica Sinica, 2006, 42(10): 1031-1035. [15]Dong D, Zhang S, Wang Z, et al. Nearest-neighbor coordination polyhedral clusters in metallic phases defined using Friedel oscillation and atomic dense packing[J]. Journal of Applied Crystallography, 2015, 48(6): 2002-2005. [16]孙浚晞, 杜 婉, 肖 斌, 等. 镍基单晶高温合金多组元置换的第一性原理研究[J]. 上海金属, 2021, 43(6): 92-102. Sun Junxi, Du Wan, Xiao Bin, et al. First-principles study of multiple component substitution in nickel-based single crystal superalloy[J]. Shanghai Metals, 2021, 43(6): 92-102. [17]Misra A, Gibala R, Noebe R D. Optimization of toughness and strength in multiphase intermetallics[J]. Intermetallics, 2001, 9(10/11): 971-978. [18]Misra A, Gibala R. Plasticity in multiphaseintermetallics[J]. Intermetallics, 2000, 8(9-11): 1025-1034. [19]Misra A, Gibala R. Slip transfer and dislocation nucleation processes in multiphase ordered Ni-Fe-Al alloys[J]. Metallurgical and Materials Transactions A, 1999, 30(4): 991-1001. |