[1]宁爱林, 刘志义, 曾苏民. 大冷变形对2024铝合金组织和性能的影响[J]. 金属热处理, 2006, 31(9): 22-24. Ning Ailin, Liu Zhiyi, Zeng Suming. Effects of severe cold plastic deformation on the microstructure and properties of 2024 aluminum alloy[J]. Heat Treatment of Metals, 2006, 31(9): 22-24. [2]陈 锟, 吴新猛, 刘克家, 等. 2024铝合金相变的体积分析方法及应用[J]. 金属热处理, 2016, 41(11): 166-170. Chen Kun, Wu Xinmeng, Liu Kejia, et al. Volume analysis method of phase transition of 2024 aluminum alloy and its application[J]. Heat Treatment of Metals, 2016, 41(11): 166-170. [3]Lu Y, Wang J, Li X, et al. Effects of pre-deformation on the microstructures and corrosion behavior of 2219 aluminum alloys[J]. Materials Science and Engineering A, 2018, 723: 204-211. [4]Huang J, Li J, Liu D, et al. Correlation of intergranular corrosion behavior with microstructure in Al-Cu-Li alloy[J]. Corrosion Science, 2018, 139: 215-226. [5]杨 兵, 刘春忠, 高恩志, 等. 铸态退火2024合金在不同温度下的变形行为[J]. 材料研究学报, 2022(10): 730-738. Yang Bing, Liu Chunzhong, Gao Enzhi, et al. Deformation behavior of cast and annealed 2024 Al-alloy at different temperatures[J]. Chinese Journal of Materials Research, 2022(10): 730-738. [6]孙兆霞, 彭国胜, 陈康华, 等. 再结晶对7150铝合金局部腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2012(3): 297-303. Sun Zhaoxia, Peng Guosheng, Chen Kanghua, et al. Effect of recrystallization on localized corrosion properties of 7150 aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2012(3): 297-303. [7]杨玉洁, 吴 明, 王 旭, 等. 铝合金应力腐蚀开裂的影响机制[J]. 轻合金加工技术, 2017(10): 5-10, 16. Yang Yujie, Wu Ming, Wang Xu, et al. Influence mechanism on stress corrosion behavior of aluminum alloy[J]. Light Alloy Fabrication Technology, 2017(10): 5-10, 16. [8]丁小理, 高森田. 电导率与铝合金挤压制程稳定性的研究[J]. 铝加工, 2016(2): 45-49. Ding Xiaoli, Gao Sentian. Research on stability of electrical conductivity and aluminum alloy extrusion process[J]. Aluminium Fabrication, 2016(2): 45-49. [9]赵海洋, 高多龙, 张 童, 等. 电弧增材制造航空AA2024铝合金的微观结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022(4): 621-628. Zhao Haiyang, Gao Duolong, Zhang Tong, et al. Microstructure and corrosion evolution of aerospace AA2024 Al-alloy thin wall structure produced through WAAM[J]. Journal of Chinese Society for Corrosion and Protection, 2022(4): 621-628. [10]Rout P K, Ghosh M M, Ghosh K S. Influence of aging treatments on alterations of microstructural features and stress corrosion cracking behavior of an Al-Zn-Mg alloy[J]. Journal of Materials Engineering and Performance, 2015, 24(7): 2792-2805. [11]贺春花, 李红萍, 叶凌英, 等. 晶粒组织对7150铝合金抗腐蚀性能的影响[J]. 材料导报, 2021(22): 22109-22114. He Chunhua, Li Hongping, Ye Lingying, et al. Effect of grain structure on corrosion resistance of 7150 Al alloy[J]. Materials Reports, 2021(22): 22109-22114. [12]吴沛沛, 田爱琴, 段浩伟, 等. 晶粒尺寸对Al-Zn-Mg铝合金应力腐蚀敏感性的影响[J]. 失效分析与预防, 2016(1): 6-12. Wu Peipei, Tian Aiqin, Duan Haowei, et al. Effect of grain size on stress corrosion cracking susceptibility of an Al-Zn-Mg Alloy[J]. Failure Analysis and Prevention, 2016(1): 6-12. [13]张 婷, 孙 祥, 何 欢, 等. 时效处理对7N01铝合金应力腐蚀性能的影响[J]. 热加工工艺, 2016(24): 181-184. Zhang Ting, Sun Xiang, He Huan, et al. The effect of aging treatment on the stress corrosion performance of 7N01 aluminum alloy[J]. Hot Working Technology, 2016(24): 181-184. [14]周文标, 谢尚昇, 覃 珊, 等. 再结晶组织对7N01铝合金型材应力腐蚀敏感性的影响[J]. 热加工工艺, 2015(4): 223-225, 229. Zhou Wenbiao, Xie Shangsheng, Tan Shan, et al. Effect of recrystallization structure on stress corrosion cracking sensitivity of 7N01 aluminum alloy[J]. Hot Working Technology, 2015(4): 223-225, 229. [15]杜爱华, 龙晋明, 裴和中. 高强铝合金应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2008(4): 251-256. Du Aihua, Long Jinming, Pei Hezhong. Research progress in stress corrosion cracking of high-strength aluminum alloy[J]. Journal of Chinese Society for Corrosion and Protection, 2008(4): 251-256. [16]王 荣, 鄢国强, 李光福, 等. 7020铝合金列车车钩梁开裂原因与机理[J]. 中国腐蚀与防护学报, 2008(4): 240-245. Wang Rong, Yan Guoqiang, Li Guangfu, et al. Failure analysis of cracking of coupler beam of aluminum alloy 7020[J]. Journal of Chinese Society for Corrosion and Protection, 2008(4): 240-245. [17]宋仁国, 曾梅光, 张宝金, 等. 7050铝合金晶界偏析与应力腐蚀、腐蚀疲劳行为的研究[J]. 中国腐蚀与防护学报, 1996(1): 1-8. Song Renguo, Zeng Meiguang, Zhang Baojin, et al. Investigation of relation between grain boundary segregation and behavior of stress corrosion and corrosion fatigue in 7050 aluminium alloy[J]. Journal of Chinese Society for Corrosion and Protection, 1996(1): 1-8. [18]Saud H M, Abdulrazzaq M A. Study the effect of cold working on the mechanical properties of aluminum alloy 2024 T4[J]. Materials Science and Engineering, 2020, 928: 022125. [19]Huda Z, Taib N I, Zaharinie T. Characterization of 2024-T3: An aerospace aluminum alloy[J]. Materials Chemistry and Physics, 2009, 113(2/3): 515-517. [20]杜 娟, 田 辉, 陈亚军, 等. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J]. 材料工程, 2018, 46(4): 74-81. Du Juan, Tian Hui, Chen Yajun, et al. Susceptibility to stress corrosion and crack initiation and propagation of 7A04 aluminum alloy[J]. Journal of Materials Engineering, 2018, 46(4): 74-81. [21]Krymskiy S V, Ilyasov R, Avtokratova E, et al. Effect of Zr on structure and resistance to intergranular corrosion of severely deformed 2024 aluminum alloy[J]. Journal of Metastable and Nanocrystalline Materials, 2019, 31: 35-42. [22]Sun L, Chen L, Guo Y, et al. Experimental study and optimization on solution and artificial aging of cold-rolled 2024 Al alloy sheet[J]. Journal of Materials Engineering and Performance, 2022, 31(7): 5419-5431. [23]Wang B J, Xu D K, Sun J, et al. Effect of grain structure on the stress corrosion cracking(SCC) behavior of an as-extruded Mg-Zn-Zr alloy[J]. Corrosion Science, 2019, 157: 347-356. [24]Youfang C, Longtao J, Guwei S, et al. Quantitative study on the microstructural evolution and dimensional stability mechanism of 2024 Al alloy during long-term thermal cycling[J]. Journal of Materials Research and Technology, 2024, 28: 282313-2325. [25]Zuchry M, Renreng I, Arsyad H, et al. Effect of anodizing on aluminum alloy 2024 with boric sulfate acid in medium 3.5%NaCl[J]. Eastern-European Journal of Enterprise Technologies, 2023, 4(6): 41-50. |